Vol. 22 No. 4 (2020)
Original articles

Regeneration and rooting of etiolated adventitious shoots of blackberry (Rubus sp.) cultivars

Carlos Eduardo Millones Chanamé
Departamento Académico de Educación, Ciencias de la Comunicación y Ciencias Básicas, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Peru
Ernestina Rosario Vásquez Castro
Departamento Académico de Educación, Ciencias de la Comunicación y Ciencias Básicas, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Peru

Published 2020-10-01 — Updated on 2020-10-09

Keywords

  • Rubus,
  • regeneration,
  • propagation,
  • darkness

How to Cite

Millones Chanamé, C. E., & Vásquez Castro, E. R. . (2020). Regeneration and rooting of etiolated adventitious shoots of blackberry (Rubus sp.) cultivars. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 22(4), 338–342. https://doi.org/10.18271/ria.2020.195

Abstract

The objective of the present study was to evaluate the etiolated adventitious shoot regeneration for the development of anin vitropropagation protocol of threeRubussp. cultivars. Zygotic embryos were extracted from botanical seeds ofRubussp. cultivars andplaced in establishment culture medium. After 90 days ofin vitroculture, the seedlings were conditioned to obtain the basal stemsegments and placed in growth and development culture media, they were then subjected to periods of darkness for etiolated adventitiousshoot regeneration. Afterwards, the nodal segments were transferred to rooting culture media. Results showed that the regeneration ofadventitious shoots fromRubussp. cultivars was on average eight days. Likewise, the sectioned nodal segments of the adventitious shootsinduced roots when the medium contained the combination of the auxins NAA and IBA. The regeneration of etiolated adventitious shootsin the three cultivars ofRubussp. allowed to obtain elongated shoots in a short time and without the use of growth regulators, facilitatingthein vitropropagation of this species

References

  1. Alice, L. A. y Campbell, C. S. (1999). Phylogeny of Rubus (Rosaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. American Journal of Botany, 86(1), 81–97. https://doi.org/10.2307/2656957.
  2. Ayub, R. A., Dos Santos, J. N., Zanlorensi, L. A., Da Silva, D. M., De Carvalho, T. C. y Grimaldi, F. (2019). Sucrose concentration and volume of liquid medium on the in vitro growth and development of blackberry cv. Tupy in temporary immersion systems. Ciencia e Agrotecnologia, 43. https://doi.org/10.1590/1413-7054201943007219.
  3. Bach, A., Kapczyn´ska, A., Dziurka, K. y Dziurka, M. (2018). The importance of applied light quality on the process of shoot organogenesis and production of phenolics and carbohydrates in Lachenalia sp. cultures in vitro. South African Journal of Botany, 114, 14–19. https://doi.org/10.1016/j.sajb.2017.10.015.
  4. Bueno, P. M. C., Biasi, L. A. y Tofanelli, M. B. D. (2018). Micropropagation protocol for the wild Brazilian greenberry (Rubus erythroclados). Revista Colombiana de Ciencias Hortícolas, 12(2), 405–415. https://doi.org/10.17584/rcch.2018v12i2.7226.
  5. Cancino-Escalante, G. O., Quevedo García, E., Villamizar, C. E. y Díaz Carvajal, C. (2015). Propagación in vitro de materiales seleccionados de Rubus glaucus Benth (mora de Castilla) en la provincia de Pamplona, región nororiental de Colombia. Revista Colombiana de Biotecnología, 17(2), 7–15. https://doi.org/10.15446/rev.colomb.biote.v17n2.54262.
  6. Clark, J. R. y Finn, C. E. (2014). Blackberry cult ivation in the world. Revista Brasileira de Fruticultura, 36(1), 46–57. https://doi.org/10.1590/0100-2945-445/13.
  7. Da Silva, N. D., Dutra, L. F., Bianchi, V. J., Sommer, L. R., Vargas, D. P. y Peters, J. A. (2016). Conservação in vitro de amoreira-preta: Crescimento lento. Plant Cell Culture & Micropropagation, 12(1), 7–12. http://177.105.2.193/ojs/index.php/PlantCellCultureMicropropagation/article/view/ 82/36.
  8. Gajdošová, A., Vujovic´, T., Súkeníková, M. y Libiaková, G. (2015). Improvement of adventitious organogenesis for regeneration of transgenic plants in blackberry. Genetika, 47(2), 599–608. https://doi.org/10.2298/GENSR1502599G.
  9. Gammoudi, N., Pedro, T. S., Ferchichi, A. y Gisbert, C. (2018). Improvement of regeneration in pepper: a recalcitrant species. In Vitro Cellular & Developmental Biology
  10. - Plant, 54(2), 145–153. https://doi.org/10.1007/s11627-017-9838-1.
  11. Hunková, J., Libiaková, G., Fejér, J., Vujovic, T. y Gajdosová, A. (2018). Testing of different iron sources and concentrations on shoot multiplication of blackberry (Rubus fruticosus L.). Genetika, 50(1), 351–356. https://doi.org/10.2298/GENSR1801351H.
  12. Hunková, J., Libiaková, G. y Gajdošová, A. (2016). Shoot proliferation ability of selected cultivars of Rubus spp. as influenced by genotype and cytokinin concentration. Journal of Central European Agriculture, 17(2), 379–390. https://doi.org/10.5513/JCEA01/17.2.1718.
  13. Lebedev, V., Arkaev, M., Dremova, M., Pozdniakov, I. y Shestibratov, K. (2019). Effects of growth regulators and gelling agents on ex vitro rooting of Raspberry. Plants, 8(1), 6–15. https://doi.org/10.3390/plants8010003.
  14. Makenzi, N. G., Mbinda, W. M., Okoth, R. O. y Ngugi, M. P. (2018). In Vitro Plant Regeneration of Sweetpotato Through Direct Shoot Organogenesis. Journal of Plant Biochemistry & Physiology, 06(01). https://doi.org/10.4172/2329-9029.1000207.
  15. Millones, C. E. (2018). Establecimiento y ensayos preliminares de propagación in vitro de zarzamora silvestre (Rubus sp.) del Centro Poblado San Salvador, región Amazonas. Revista de Investigación Científica UNTRM: Ciencias Naturales e Ingeniería, 2(2), 31–38. http://dx.doi.org/10.25127/ucni.v3i2.316.
  16. Monasterio Huelin, E. (1995). Biología de reproducción en Rubus L. (Rosaceae). Propagación vegetativa. Anales del Jardín Botánico de Madrid, 52(2), 145–149. https://dialnet.unirioja.es/servlet/articulo?codigo=1419193.
  17. Muktadir, M. A., Habib, M. A., Khaleque Mian, M. A. y Yousuf Akhond, M. A. (2016). Regeneration efficiency based on genotype, culture condition and growth regulators of eggplant (Solanum melongena L.). Agriculture and Natural Resources, 50(1), 38–42. https://doi.org/10.1016/j.anres.2014.10.001.
  18. Murashige, T. y Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.
  19. Oliveira-Cauduro, Y. de, Lopes, V. R., Bona, C. M. De, Alcantara, G. B. de, y Biasi, L. A. (2016). Micropropagação de abacaxizeiro com enraizamento in vitro e ex vitro. Plant Cell Culture & Micropropagation, 12(2), 53–60. https://doi.org/10.15446/acag.v66n1.54182.
  20. Pérez-Martínez, B. A. y Castañeda-Garzón, S. L. (2016). In vitro propagation of Rubus macrocarpus Benth. and Rubus bogotensis Kunth, as an ex situ conservation strategy. Acta Agronómica, 66(1), 102–108. https://doi.org/10.15446/acag.v66n1.54182.
  21. Robres-Torres, E., Lópéz-Medina, J. y Rocha-Granados, M. C. (2015). Adventitious shoot elongation of raspberry (Rubus idaeus L.) is influenced by brassinosteroids. Revista Mexicana de Ciencias Agrícolas, 6(5), 991–999. http://www.scielo.org.mx/pdf/remexc/v6n5/v6n5a7.pdf.
  22. Serafim, C. M., Campos, A. S., Dos Santos Melo, P. B., Ribeiro de Castro, A. C. y Portugal Pinto de Carvalho, A. C. (2018). Types and concentrations of cytokinins in the micropropagation of Anthurium maricense. Revista Agro@Mbiente On-Line, 12(2), 117–123. https://doi.org/10.18227/1982-8470ragro.v12i2.4671.
  23. Taiz, L. y Zeiger, E. (2013). Fisiología Vegetal (Quinta). Artmet.
  24. Wang, H., Yang, Y., Li, M., Liu, J. y Jin, W. (2019). Reinvigoration of diploid strawberry (Fragaria vesca) during adventitious shoot regeneration. Scientific Reports, 9(1), 13007. https://doi.org/10.1038/s41598-019-49391-8.
  25. Yang, H., Klopotek, Y., Hajirezaei, M. R., Zerche, S., Franken, P. y Druege, U. (2019). Role of auxin homeostasis and response in nitrogen limitation and dark stimulation of adventitious root formation in petunia cuttings. Annals of Botany, 124(6), 1053–1066. https://doi.org/10.1093/aob/mcz095.
  26. Zhang, J. X., Wang, X. Y., Feng, Z. Z., Geng, X. J., Mu, S. M., Huo, H. Y., Tong, H., Li, M. Z., Li, Y., Chi, Y. y Chen, Y. S. (2016). In vitro establishment of a highly effective method of castor bean (Ricinus communis L.) regeneration using shoot explants. Journal of Integrative Agriculture, 15(6), 1417–1422. https://doi.org/10.1016/S2095-3119(15)61286-2.
  27. Zhao, Y., Stiles, A. R., Saxena, P. K. y Liu, C. Z. (2013). Dark preincubation improves shoot organogenesis from Rhodiola crenulata leaf explants. Biologia Plantarum, 57(1), 189–192. https://doi.org/10.1007/s10535-012-0261-5.