Vol. 23 No. 1 (2021)
Original articles

Kinetic models applied to the growth of Saccharomyces boulardii

Alex Danny Chambi Rodriguez
Universidad Peruana Unión
Ana Mónica Torres Jimenez
Universidad Peruana Unión

Published 2021-01-15

Keywords

  • Saccharomyces boulardii,
  • predictive microbiology,
  • microbial growth

How to Cite

Chambi Rodriguez, A. D., & Torres Jimenez , A. M. (2021). Kinetic models applied to the growth of Saccharomyces boulardii. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 23(1), 47-54. https://doi.org/10.18271/ria.2021.213

Abstract

Predictive microbiology is an interesting tool that allows evaluating the behavior of biomass and metabolites in different culture media, providing multiple benefits, whether scientific or industrial, for these and other reasons the objective of this research was to evaluate applied sigmoidal kinetic models to the growth of Saccharomyces boulardii in milk. For this purpose, flasks were prepared with 200 mL of fresh cow's milk, previously sterilized at 121 ° C x 15 min, then the strains were inoculated at a temperature of 37 ° C and incubated at the same temperature under constant shaking of 20 revolutions per minute (rpm) in a water bath with shaking, for 7 h; To construct the curves and obtain the growth constants, colony-forming units were counted per milliliter (cfu / ml) at one-hour intervals, with a monocular microscope and Neubauer chamber. Also, the pH and titratable acidity expressed in lactic acid were measured. The data obtained were converted to a logarithmic scale to apply the sigmoidal equations of Gompertz, Logistic, Modified Logistic and Weibull. The results of the kinetic modeling gave us that the modified Logistics and Logistics models presented a better fit compared to the rest. Likewise, the Weibull model presented the lowest value of adjustment, on the other hand, in the analysis of the statistical criteria, all models except Weibull present similarity. Finally, each sigmoidal model allowed to evaluate the growth of Saccharomyces boulardii with each of its kinetic constants.

References

  1. Belda, C., Pina, M., Espinosa, J., Marco, A., Martínez, A., & Rodrigo, D. (2014). Use of the modified Gompertz equation to assess the Stevia rebaudiana Bertoni antilisterial kinetics. Food Microbiology, 38, 56–61. https://doi.org/10.1016/j.fm.2013.08.009
  2. Brousett, M., Torres, A., Chambi, A., Mamani, B., & Gutiérrez, H. (2015). Physicochemical, microbiological and toxicological quality of raw milk in cattle basins of the region Puno-Peru. Scientia Agropecuaria, 6(3), 165–176. https://doi.org/10.17268/sci.agropecu.2015.03.03
  3. Castro, G., Valbuena, E., Sánchez, E., Briñez, W., Vera, H., & Leal, M. (2008). Comparación de modelos sigmoidales aplicaddos al crecimiento de Lactococcus lactis subsp. lactis. Revista Cientifica FCV-LUZ, XVIII, 582–588.
  4. Cayré, M., Vignolo, G., & Garro, A. (2007). Selección de un modelo primario para describir la curva de crecimiento de bacterias lácticas y brochothrix thermosphacta sobre emulsiones cárnicas cocidas. Información Tecnológica, 18(3), 23–29.
  5. Ccopa, R. (2009). “Evaluacion Del Efecto De La Temperatura Y Tiempo De Calentamiento En La Vida Util Del Queso Tipo Paria Envasado Al Vacío.”
  6. Chavan, M., Gat, Y., Harmalkar, M., & Waghmare, R. (2018). Development of non-dairy fermented probiotic drink based on germinated and ungerminated cereals and legume. LWT - Food Science and Technology, 91(October 2017), 339–344. https://doi.org/10.1016/j.lwt.2018.01.070
  7. Chowdhury, B., Chakraborty, R., & Chaudhuri, U. (2007). Validity of modified Gompertz and Logistic models in predicting cell growth of Pediococcus acidilactici H during the production of bacteriocin pediocin AcH. Journal of Food Engineering, 80(4), 1171–1175. https://doi.org/10.1016/j.jfoodeng.2006.08.019
  8. Fernández, E., Hernández, J., Suárez, V., Villares, J., Yurrita, L., Cabria, M., & Morán, F. (2015). Documento de Consenso: Importancia nutricional y metabólica de la leche. Nutricion Hospitalaria, 31(1), 92–101. https://doi.org/10.3305/nh.2015.31.1.8253
  9. Fuentes, G., Ruiz, R., Sánchez, J., Ávila, D., & Escutia, J. (2013). Análisis microbiológico de leche de origen orgánico: atributos deseables para su transformación. Agricultura Sociedad y Desarrollo, 10(4), 419. https://doi.org/10.22231/asyd.v10i4.134
  10. Gil, J. (2006). Fundamentos sobre la convergencia en modelos iterativos para sistemas de ecuaciones lineales. Fides et Ratio, 1, 22–32.
  11. Gu, X., Sun, Y., Tu, K., Dong, Q., & Pan, L. (2016). Predicting the growth situation of Pseudomonas aeruginosa on agar plates and meat stuffs using gas sensors. Scientific Reports, 6(1), 38721. https://doi.org/10.1038/srep38721
  12. Guevara, D., Montero, M., Valle, L., & Avilés, D. (2019). Calidad de leche acopiada de pequeñas ganaderías de Cotopaxi, Ecuador. Revista de Investigaciones Veterinarias Del Perú, 30(1), 247–255. https://doi.org/10.15381/rivep.v30i1.15679
  13. Mejía, J., Montoya, R., Cortés, C., & Saavedra, A. (2016). Levaduras Termotolerantes: Aplicaciones Industriales, Estrés Oxidativo y Respuesta Antioxidante. Informacion Tecnologica, 27(4), 3–16. https://doi.org/10.4067/S0718-07642016000400002
  14. Nissen, L., di Carlo, E., & Gianotti, A. (2020). Prebiotic potential of hemp blended drinks fermented by probiotics. Food Research International, 131(January), 109029. https://doi.org/10.1016/j.foodres.2020.109029
  15. Pahumunto, N., Piwat, S., Chanvitan, S., Ongwande, W., Uraipan, S., & Teanpaisan, R. (2020). Fermented milk containing a potential probiotic Lactobacillus rhamnosus SD11 with maltitol reduces Streptococcus mutans: A double-blind, randomized, controlled study. Journal of Dental Sciences. https://doi.org/10.1016/j.jds.2020.03.003
  16. Peña, A. S. (2007). Flora intestinal, probióticos, prebióticos, simbióticos y alimentos novedosos. Revista Espanola de Enfermedades Digestivas, 99(11), 653–658. https://doi.org/10.4321/S1130-01082007001100006
  17. Sen, S., & Mansell, T. (2020). Yeasts as probiotics: Mechanisms, outcomes, and future potential. Fungal Genetics and Biology, 137(May 2019), 103333. https://doi.org/10.1016/j.fgb.2020.103333
  18. Torres, V., Barbosa, I., Meyer, R., Noda, A., & Sarduy, L. (2012). Criterios de bondad de ajuste en la selección de modelos no lineales en la descripción de comportamientos biológicos. Revista Cubana de Ciencia Agrícola, 46(4), 345–350. https://doi.org/10.1097/MOG.0b013e32835a3500
  19. Vanegas, D., & Ramírez, M. (2016). Correlación del crecimiento de Pseudomonas fluorescens en la producción de polihidroxialcanoatos de cadena media (PHAMCL) mediante modelos primarios de Gompertz, logístico y baranyi. Información Tecnológica, 27(2), 87–96. https://doi.org/10.4067/S0718-07642016000200011
  20. Vega, R., Martinez, H., Montañez, J., & Rodiles, J. (2016). Viabilidad de Saccharomyces boullardii en queso fresco bajo condiciones de acidez “in vitro.” Nova Scientia, 7(15), 68.
  21. Wirunpan, M., Savedboworn, W., & Wanchaitanawong, P. (2016). Survival and shelf life of Lactobacillus lactis 1464 in shrimp feed pellet after fluidized bed drying. Agriculture and Natural Resources, 50(1), 1–7. https://doi.org/10.1016/j.anres.2016.01.001
  22. Yerlikaya, O. (2019). Probiotic potential and biochemical and technological properties of Lactococcus lactis ssp. lactis strains isolated from raw milk and kefir grains. Journal of Dairy Science, 102(1), 124–134. https://doi.org/10.3168/jds.2018-14983
  23. Zumbado, W., Esquivel, P., & Wong, E. (2006). Selección de una levadura para la producción de Biomasa: Crecimiento en suero de queso. Agronimia Mesoamericana, 17, 151–160.