High Andean regions and their socioeconomic vulnerability: the case of the urban area of Puno
Published 2023-08-08
Keywords
- Exposure, resilience, Hierarchical Analytical Process, vulnerability assessment
How to Cite
Abstract
In recent times, the risks of disasters caused by natural events have increased as a result of climate change. The magnitude of a disaster resulting from the impact of a natural hazard on a human system depends not only on the type and intensity of the hazard, but also on the socioeconomic conditions of the community. The objective of this research was to determine the level of socioeconomic vulnerability to natural disasters in the urban area of the city of Puno, in the High Andean region of southern Peru. This was achieved by using the Analytical Hierarchical Process (AHP) technique in combination with Geographic Information Systems (GIS). A semi-structured questionnaire was applied to a random sample of 256 people. Vulnerability data was collected for five different types of hazards to which the population is exposed: floods, erosion, rockfall, landslides, and unstable soils. Fourteen indicators were used in the dimensions of exposure, fragility and resilience. As a result, a socioeconomic vulnerability map was obtained, showing levels of vulnerability corresponding to the levels of high and very high vulnerability of the peripheral areas of the study area. The findings of this research will be helpful for those in charge of policy-formulation in disaster risk-management to take informed decisions in reducing the vulnerability and increasing the resilience of the High Andean population of Puno.
References
- Apotsos, A. (2019). Mapping relative social vulnerability in six mostly urban municipalities in South Africa. Applied Geography, 105, 86–101. https://doi.org/10.1016/j.apgeog.2019.02.012
- Arvin, M., Beiki, P., Hejazi, S. J., Sharifi, A., & Atashafrooz, N. (2023). Assessment of infrastructure resilience in multi-hazard regions: A case study of Khuzestan Province. International Journal of Disaster Risk Reduction, 88. https://doi.org/10.1016/j.ijdrr.2023.103601
- Assis Dias, M. C. de, Saito, S. M., Alvalá, R. C. dos S., Seluchi, M. E., Bernardes, T., Camarinha, P. I. M., Stenner, C., & Nobre, C. A. (2020). Vulnerability index related to populations atrisk for landslides in the Brazilian Early Warning System (BEWS). International Journal of Disaster Risk Reduction, 49. https://doi.org/10.1016/j.ijdrr.2020.101742
- Aversa, M., Rotger, D., & Senise, F. (2020). Living in the margins of risk. Flood and resilience in la Plata. In Bitacora Urbano Territorial (Vol. 30, Issue 3, pp. 219–232). Universidad Nacional de Colombia. https://doi.org/10.15446/BITACORA.V30N3.86792
- Birkmann, J., Jamshed, A., McMillan, J. M., Feldmeyer, D., Totin, E., Solecki, W., Ibrahim, Z. Z., Roberts, D., Kerr, R. B., Poertner, H. O., Pelling, M., Djalante, R., Garschagen, M., Leal Filho, W., Guha-Sapir, D., & Alegría, A. (2022). Understanding human vulnerability to climate change: A global perspective on index validation for adaptation planning. Science of the Total Environment, 803. https://doi.org/10.1016/j.scitotenv.2021.150065
- Boulange, B., & Aquize Jaen, E. (1981). MorphoEogie, hydrographie et climatologie du lac Titicaca et de son bassin versant(l). Rev. Hydrobiol. Trop., 14(4), 269–287. https://horizon.documentation.ird.fr/exldoc/pleins_textes/cahiers/hydrob-tr
- Cardona, O. (2010). La necesidad de pensar de manera holística los conceptos de vulnerabilidad y riesgo “Una Crítica y una Revisión Necesaria para la Gestión.” https://www.desenredando.org/public/articulos/2003/rmhcvr/rmhcvr_may-08-2003.pdf
- Choi, E., & Song, J. (2022). Clustering-based disaster resilience assessment of South Korea communities building portfolios using open GIS and census data. International Journal of Disaster Risk Reduction, 71. https://doi.org/10.1016/j.ijdrr.2022.102817
- Cutter, S. L. (2009). Social Science Perspectives on Hazards and Vulnerability Science. In Geophysical Hazards (pp. 17–30). Springer Netherlands. https://doi.org/10.1007/978-90-481-3236-2_2
- Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2012). Social vulnerability to environmental hazards. Hazards Vulnerability and Environmental Justice, 143–160. https://doi.org/10.1111/1540-6237.8402002
- Das, S. (2020). Flood susceptibility mapping of the Western Ghat coastal belt using multi-source geospatial data and analytical hierarchy process (AHP). Remote Sensing Applications: Society and Environment, 20. https://doi.org/10.1016/j.rsase.2020.100379
- Dilshad, T., Mallick, D., Udas, P. B., Goodrich, C. G., Prakash, A., Gorti, G., Bhadwal, S., Anwar, M. Z., Khandekar, N., Hassan, S. M. T., Habib, N., Abbasi, S. S., Syed, M. A., & Rahman, A. (2019). Growing social vulnerability in the river basins: Evidence from the Hindu Kush Himalaya (HKH) Region. Environmental Development, 31, 19–33. https://doi.org/10.1016/j.envdev.2018.12.004
- Eini, M., Kaboli, H. S., Rashidian, M., & Hedayat, H. (2020). Hazard and vulnerability in urban flood risk mapping: Machine learning techniques and considering the role of urban districts. International Journal of Disaster Risk Reduction, 50. https://doi.org/10.1016/j.ijdrr.2020.101687
- Fatemi, F., Ardalan, A., Aguirre, B., Mansouri, N., & Mohammadfam, I. (2017). Social vulnerability indicators in disasters: Findings from a systematic review. In International Journal of Disaster Risk Reduction (Vol. 22, pp. 219–227). Elsevier Ltd. https://doi.org/10.1016/j.ijdrr.2016.09.006
- Fekete, A., & Rufat, S. (2023). Should everyone in need be treated equally? A European survey of expert judgment on social vulnerability to floods and pandemics to validate multi-hazard vulnerability factors. International Journal of Disaster Risk Reduction, 85. https://doi.org/10.1016/j.ijdrr.2023.103527
- Gaillard, J. C. (2010). Vulnerability, capacity and resilience: Perspectives for climate and development policy. Journal of International Development, 22(2), 218–232. https://doi.org/10.1002/jid.1675
- Gaillard, J. C. (2019). Disaster studies inside out. Disasters, 43(S1), S7–S17. https://doi.org/10.1111/disa.12323
- Ha-Mim, N. M., Rahman, M. A., Hossain, M. Z., Fariha, J. N., & Rahaman, K. R. (2022). Employing multi-criteria decision analysis and geospatial techniques to assess flood risks: A study of Barguna district in Bangladesh. International Journal of Disaster Risk Reduction, 77. https://doi.org/10.1016/j.ijdrr.2022.103081
- Hejazi, S. J., Sharifi, A., & Arvin, M. (2022). Assessment of social vulnerability in areas exposed to multiple hazards: A case study of the Khuzestan Province, Iran. International Journal of Disaster Risk Reduction, 78. https://doi.org/10.1016/j.ijdrr.2022.103127
- Hofflinger, A., Somos-Valenzuela, M. A., & Vallejos-Romero, A. (2019). Response time to flood events using a social vulnerability index (ReTSVI). Natural Hazards and Earth System Sciences, 19(1), 251–267. https://doi.org/10.5194/nhess-19-251-2019
- Hunt, J. C. R., Aktas, Y. D., Mahalov, A., Moustaoui, M., Salamanca, F., & Georgescu, M. (2017). Climate change and growing megacities: Hazards and vulnerability. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 171(6), 314–326. https://doi.org/10.1680/jensu.16.00068
- IPCC. (2014). Annex II: Glossary. http://danida.vnu.edu.vn/cpis/files/IPCC/syr/pdf/AR5_SYR_FINAL_Glossary.pdf
- IPCC, Pörtner, H.-O., Roberts, M., Tignor, E., Poloczanska, k, Mintenbeck, A., Alegría, M., Craig, S., Langsdorf, S., Löschke, V., Möller, O., & Okem, B. (2022). Climate change 2022: Impacts, adaptation and vulnerability. Jean. https://doi.org/10.1017/9781009325844.002
- Kalaycıoğlu, M., Kalaycıoğlu, S., Çelik, K., Christie, R., & Filippi, M. E. (2023). An analysis of social vulnerability in a multi-hazard urban context for improving disaster risk reduction policies: The case of Sancaktepe, İstanbul. International Journal of Disaster Risk Reduction, 91. https://doi.org/10.1016/j.ijdrr.2023.103679
- Kashyap, S., & Mahanta, R. (2021). Socioeconomic Vulnerability to Urban Floods in Guwahati, Northeast India: An Indicator-Based Approach. In Economic Effects of Natural Disasters (pp. 457–475). Elsevier. https://doi.org/10.1016/b978-0-12-817465-4.00027-3
- Llorente-Marrón, M., Díaz-Fernández, M., Méndez-Rodríguez, P., & Arias, R. G. (2020). Social vulnerability, gender and disasters. The case of Haiti in 2010. Sustainability (Switzerland), 12(9). https://doi.org/10.3390/SU12093574
- Mavhura, E., Manyena, B., & Collins, A. E. (2017). An approach for measuring social vulnerability in context: The case of flood hazards in Muzarabani district, Zimbabwe. Geoforum, 86, 103–117. https://doi.org/10.1016/j.geoforum.2017.09.008
- Mileti, D. (1999). Disasters by Design: A Reassessment of Natural Hazards in the United States. Joseph Henry Press. https://doi.org/10.17226/5782
- Nejat, A., Solitare, L., Pettitt, E., & Mohsenian-Rad, H. (2022). Equitable community resilience: The case of Winter Storm Uri in Texas. International Journal of Disaster Risk Reduction, 77. https://doi.org/10.1016/j.ijdrr.2022.103070
- Niazi, I. U. H. K., Rana, I. A., Arshad, H. S. H., Lodhi, R. H., Najam, F. A., & Jamshed, A. (2022). Psychological resilience of children in a multi-hazard environment: An index-based approach. International Journal of Disaster Risk Reduction, 83. https://doi.org/10.1016/j.ijdrr.2022.103397
- Norazam, A. S. (2018). Resilient Health Infrastructure: Strengthening hospitals’ capacity to respond effectively during disasters and crises. Procedia Engineering, 212, 262–269. https://doi.org/10.1016/j.proeng.2018.01.034
- Ojo, A., Papachristodoulou, N., & Ibeh, S. (2018). The Development of an Infrastructure Quality Index for Nigerian Metropolitan Areas Using Multivariate Geo-Statistical Data Fusion. Urban Science, 2(3), 59. https://doi.org/10.3390/urbansci2030059
- Petraroli, I., & Baars, R. (2022). To be a woman in Japan: Disaster vulnerabilities and gendered discourses in disaster preparedness in Japan. International Journal of Disaster Risk Reduction, 70. https://doi.org/10.1016/j.ijdrr.2021.102767
- Radwan, F., Alazba, A. A., & Mossad, A. (2019). Flood risk assessment and mapping using AHP in arid and semiarid regions. Acta Geophysica, 67(1), 215–229. https://doi.org/10.1007/s11600-018-0233-z
- Roncancio, D. J., Cutter, S. L., & Nardocci, A. C. (2020). Social vulnerability in Colombia. International Journal of Disaster Risk Reduction, 50. https://doi.org/10.1016/j.ijdrr.2020.101872
- Saaty, T. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation (McGraw-Hill International Book Company, Ed.).
- Shaji, J. (2021). Evaluating social vulnerability of people inhabiting a tropical coast in Kerala, south west coast of India. International Journal of Disaster Risk Reduction, 56. https://doi.org/10.1016/j.ijdrr.2021.102130
- Sharma, J., & Ravindranath, N. H. (2019). Applying IPCC 2014 framework for hazard-specific vulnerability assessment under climate change. In Environmental Research Communications (Vol. 1, Issue 5). Institute of Physics. https://doi.org/10.1088/2515-7620/ab24ed
- Sztorch, L., Gicquel, V., & Desenclos, J. (1989). The Relief Operation in Puno District,Peru, after the 1986 Floods ofLake Titicaca. Disasters, 13(1), 33–43. https://doi.org/10.1111/j.1467-7717.1989.tb00693.x
- Tran, H., Nguyen, Q., & Kervyn, M. (2017). Household social vulnerability to natural hazards in the coastal Tran Van Thoi District, Ca Mau Province, Mekong Delta, Vietnam. Journal of Coastal Conservation, 21(4), 489–503. https://doi.org/10.1007/s11852-017-0522-8
- Travieso, A. C., Martínez, O. F., Hernández, M. L., & Morales, J. C. (2023). Comprehensive risk management of hydrometeorological disaster: A participatory approach in the metropolitan area of Puerto Vallarta, Mexico. International Journal of Disaster Risk Reduction, 87. https://doi.org/10.1016/j.ijdrr.2023.103578
- Wilches, G. (1989). Desastres, ecologismo y formación profesional. In SENA, Popayán.
- Yu, I. (2022). Development and application of a model for assessing climate-related disaster risk. International Journal of Disaster Risk Reduction, 81. https://doi.org/10.1016/j.ijdrr.2022.103218
- Zhang, G., Feng, W., Lei, Y., & Wang, S. (2022). Generation and evolution mechanism of systemic risk (SR) induced by extreme precipitation in Chinese Urban system: A case study of Zhengzhou “7 20” incident. International Journal of Disaster Risk Reduction, 83. https://doi.org/10.1016/j.ijdrr.2022.103401