Vol. 22 No. 1 (2020)
Original articles

Radiation ultraviolet-c for bacterial disinfection (total and thermotolerant coliforms) in the water treatment

Luis Jhordan Rossel Bernedo
Facultad de Ingenierías, Universidad Privada San Carlos, Puno, Peru
Luis Alberth Rossel Bernedo
Facultad de Ingenierías, Universidad Privada San Carlos, Puno, Peru
Félix Pompeyo Ferro Mayhua
Ministerio de Salud del Perú, Región de Salud Puno, Salud Chucuito, Puno, Peru
Ana Lucia Ferro Gonzales
Directora de Estudios Económicos de FerScar S.A.C. de Puno, Peru
Ronal Reynaldo Zapana Quispe
Facultad de Ingenierías, Universidad Privada San Carlos, Puno, Peru

Published 2020-09-03

Keywords

  • Exposure time,
  • bacterial inactivation,
  • Colony Forming Units,
  • Membrane Filter

How to Cite

Rossel Bernedo, L. J., Rossel Bernedo, L. A., Ferro Mayhua, F. P., Ferro Gonzales, A. L., & Zapana Quispe, R. R. . (2020). Radiation ultraviolet-c for bacterial disinfection (total and thermotolerant coliforms) in the water treatment. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 22(1), 68-77. https://doi.org/10.18271/ria.2020.537

Abstract

The study aimed to evaluate the presence of bacteria (total and thermotolerant coliforms) in the treatment of water using Class C Ultraviolet Radiation (UV-C), the research was carried out in the Quality Control Laboratory of the Treatment Plant  of Potable Water of the EPS, EMSA Puno, because current regulations require that total and thermotolerant coliform readings in drinking water should be 0 CFU / 100 ml, with UV-C radiation being an alternative for the decrease in  Chlorine use.  For what was experimented with a dose of 0,00176 W/cm2/s of UV-C radiation with a dominant wavelength of 254 nm, the experimental water samples were subjected to 1, 2, 3, and 4 seconds of exposure to the mentioned radiation.  For the determination of the bacterial presence in water (total and thermotolerant coliforms), the Membrane Filter methodology was chosen, the results obtained for the total coliform count were readings on average of 200, 165, 59 and 0 CFU/100 ml  and for the count of thermotolerant coliforms average readings of 4, 3, 1 and 0 CFU/100 ml.  Concluding that, for the total inactivation of the total coliforms and thermotolerant coliforms present in the water samples, a minimum time of 4 s of exposure to UV-C radiation was required.

References

  1. Acosta, P. M., Caro, C. A., & Perico, N. R. (2015). Análisis de interferencia de parámetros físicos del agua, en desinfección por radiacion UV. Revista de Tecnología, 105-112. doi:https://doi.org/10.18270/rt.v14i2.1874
  2. APHA, W. A. (1992). Metodos Estandar para la Examinacion de Agua y Aguas Residuales. Madrid.
  3. Beck, S. E., Ryu, H., Boczek, L. A., Cashdollar, J. L., Jeanis, K. M., Rosenblum, J. S., . . . Linden, K. G. (2017). Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy. Water Research, 207-216. doi:https://doi.org/10.1016/j.watres.2016.11.024
  4. Beck, S. E., Wright, H. B., Hargy, T. M., Larason, T. C., & Linden, K. G. (2015). Action spectra for validation of pathogen disinfection in medium-pressure ultraviolet (UV) systems. Water Research, 27-37. doi:https://doi.org/10.1016/j.watres.2014.11.028
  5. Burns, R. A. (2003). Fundamentos de Quimica, 4ta Edicion. Mexico: Pearson.
  6. Darby, J., Health, M., Jacangelo, J., Loge, F., Swaim, P., & Tchobanoglous, G. (1995). Comparison of UV Radiation to Chlorination: Guidance of Achieving Optimal UV Performance. Water Environmet Research Foundation.
  7. Droste, R. (1997). Teoria y Practica de Agua y Tratamiento de Aguas Residuales. USA: Ed. Jhon Wiley and Sons Inc.
  8. Ferro, P., Ferro, P., & Ferro, A. (2019b). Distribución temporal de las enfermedades diarreicas agudas, su relación con la temperatura y cloro residual del agua potable en la ciudad de Puno, Perú. Revista de Investigaciones Altoandinas, 69-80. doi:http://dx.doi.org/10.18271/ria.2019.446
  9. Ferro, P., Vaz-Moreira, I., & Manaia, C. M. (2019a). Betaproteobacteria are predominant in drinking water: are there reasons for concern? Critical Reviews in Microbiology. doi:https://doi.org/10.1080/1040841X.2019.1680602
  10. Green, A., Pocovíc, V., Pierscianowski, J., Biancaniello, M., Warriner, K., & Koutchma, T. (2018). Inactivation of Escherichia coli, Listeria and Salmonella by single and multiple wavelength ultraviolet-light emitting diodes. Innovative Food Science & Emerging Technologies, 353-361. doi:https://doi.org/10.1016/j.ifset.2018.03.019
  11. Gutierrez Rico, C., Robles Davila, L., Ortiz Arredondo, F., & Martinez Garcia, L. (2006). Desinfeccion Foto-catalitica del Agua para Consumo Humano usando Luz Solar y Dioxido de Titanion Inmovilizado. Centro de Estudios Academicos sobre Contaminacion Ambiental, 1-10. Obtenido de http://www.elaguapotable.com/DESINFECCI%C3%93N%20FOTO-CATAL%C3%8DTICA%20DEL%20AGUA%20PARA%20CONSUMO%20HUMANO%20USANDO%20LUZ%20SOLAR%20Y%20DI%C3%93XIDO%20DE%20TITANIO%20(TiO2)%20INMOVILIZADO.pdf
  12. Jay, J. (2002). Microbiologia Moderna de los Alimentos (4 edicion ed.). España: Acribia S.A.
  13. Koivunen, J., & Heinonen-Tanski, H. (2005). Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation and combined chemical/UV treatments. Water Research, 1519-1526. doi:https://doi.org/10.1016/j.watres.2005.01.021
  14. Li, G.-Q., Wang, W.-L., Huo, Z.-Y., Lu, Y., & Hu, H.-Y. (2017). Comparison of UV-LED and low pressure UV for water disinfection: Photoreactivation and dark repair of Escherichia coli. Water Research, 126-143. doi:https://doi.org/10.1016/j.watres.2017.09.030
  15. Marin, G. R. (2006). Fisicoquimica y Microbiologia de los medios acuaticos. Tratamiento y control de calidad de aguas. Madrid, España: Diaz de Santos.
  16. Matsumoto, T., Tatsuno, I., & Hasegawa, T. (2019). InstantaneousWater Purification by Deep Ultraviolet Light in Water Waveguide: Escherichia Coli Bacteria Disinfection. Water, 1-9. doi:https://doi.org/10.3390/w11050968
  17. Metcalf y Eddy. (1996). Ingenieria de Aguas Residuales. Tratamiento y Reutilizacion. España: Ed. McGrawHill. 3ra Edicion.
  18. Ministerio de Salud. (2011). Reglamento de la Calidad del Agua para Consumo Humano DS N° 031-2010-SA. Lima: Ministerio de Salud. Obtenido de http://www.digesa.minsa.gob.pe/publicaciones/descargas/Reglamento_Calidad_Agua.pdf
  19. Oguma, K., Kita, R., Sakai, H., Murakami, M., & Takizawa, S. (2013). Application of UV light emitting diodes to batch and flow-through water disinfection systems. Desalination, 24-30. doi:https://doi.org/10.1016/j.desal.2013.08.014
  20. Onkundi, P., Qin, Y., Chen, G., Zhang, B., & Lu, Y. (2018). Effects of single and combined UV-LEDs on inactivation and subsequent reactivation of E . coli in water disinfection. Water Research, 331-341. doi:https://doi.org/10.1016/j.watres.2018.10.014
  21. Organizacion Mundial de la Salud. (2006). Guias para la Calidad del Agua Potable. Ginebra. Obtenido de https://www.who.int/water_sanitation_health/dwq/gdwq3_es_fulll_lowsres.pdf
  22. Organizacion Panamericada de la Salud. (2004). Guias para la Calidad del Agua Potable (Vol. 2). Obtenido de https://apps.who.int/iris/bitstream/handle/10665/41985/9243545035-spa.pdf
  23. Osorio Robles, F., Torres Rojo, J. C., & Sánches Bas, M. (2011). Tratamiento de Aguas para la Eliminacion de Microorganismos y Agentes Contaminantes. España: Diaz de Santos. Obtenido de https://www.editdiazdesantos.com/wwwdat/pdf/9788479789039.pdf
  24. Perez, J. A. (1995). Desinfecion del Agua. Cloracion. Granada: Universidad de Granada.
  25. Rattanakul, S., & Oguma, K. (2018). Inactivation kinetics and efficiencies of UV-LEDs against Pseudomonas aeruginosa, Legionella pneumophila, and surrogate microorganisms. Water Research, 31-37. doi:https://doi.org/10.1016/j.watres.2017.11.047
  26. Sanchez, M., Villalobos, N., Gutierrez, E., & Caldera, Y. (2012). Diseño de un Equipo de Desinfeccion por Luz Ultravioleta para el Tratamiento de Aguas Residuales con fines de Reutilizacion. Revista Tecnocientifica URU, 11-18.
  27. Sarmiento, A., Gomez, D., Guerra, L., Toledano, D., Gonzales, F., & Rodrigez, J. (2003). Aplicacion de la Energia Solar y Luz Ultravioleta en la Potabilizacion del Agua en Escuelas Primarias. Revista Energetica, XXIV, 1-8. Obtenido de https://www.researchgate.net/publication/266369465_APLICACION_DE_LA_ENERGIA_SOLAR_Y_LA_LUZ_ULTRAVIOLETA_EN_LA_POTABILIZACION_DEL_AGUA_EN_ESCUELAS_PRIMARIAS
  28. Word Bank. (2019). Water. Recuperado el 26 de Diciembre de 2019, de http://www.worldbank.org/en/topic/water/overview
  29. World Bank. (2018). Water in Agriculture. Recuperado el 25 de Diciembre de 2019, de https://www.worldbank.org/en/topic/water-in-agriculture
  30. Zeng, F., Cao, S., Jin, W., Zhou, X., Ding, W., & Tu, R. (2020). Inactivation of chlorine-resistant bacterial spores in drinking water using UV irradiation , UV / Hydrogen peroxide and UV / Peroxymonosulfate : Ef fi ciency and mechanism. Journal of Cleaner Production, 118666. doi:https://doi.org/10.1016/j.jclepro.2019.118666.