Vol. 24 Núm. 2 (2022)
Artículo original

Producción de tubérculos de yemas presentes en cáscara de papa con abonamiento de cepas de Trichoderma sp.

JUAN INQUILLA MAMANI
UNIVERSIDAD NACIONAL DEL ALTIPLANO - PUNO
Luis Pauro Flores
Universidad Nacional del Altiplano Puno
Nora Ortiz Calcina
Universidad Nacional del Altiplano Puno
Rosario Isabel Bravo Portocarrero
Facultad de Ciencias de Ingenierías, Universidad Nacional de Juliaca, Perú.

Publicado 2022-05-16

Palabras clave

  • Cáscara de papa, rendimiento, tubérculos, Trichoderma, Yemas

Cómo citar

INQUILLA MAMANI, J., Flores, L. P. ., Ortiz Calcina, N. ., & Bravo Portocarrero, R. I. . (2022). Producción de tubérculos de yemas presentes en cáscara de papa con abonamiento de cepas de Trichoderma sp . Revista De Investigaciones Altoandinas - Journal of High Andean Research, 24(2), 122-130. https://doi.org/10.18271/ria.2022.370

Resumen

El consumo de papa se realiza en todo el Altiplano de Puno y entre los desechos orgánicos producidos diariamente en el hogar se encuentra la cáscara de papa. El objetivo de la investigación es la producción de tubérculos a partir de yemas presentes en cáscaras de papa con cuatro cepas de Trichoderma sp. El estudio se realizó bajo un diseño experimental con cuatro cepas de Trichoderma sp., en forma al azar con un total de 5 tratamientos distribuidas con dos repeticiones con un total de 12 unidades experimentales, se seleccionó las cáscaras de papa con yemas, incluyendo un abonamiento con cuatro cepas nativas y comerciales de Trichoderma, para favorecer el crecimiento de plántulas, dándose mayor valor a la “producción orgánica”. Los resultados encontrados evidencian que la mayor cantidad de tubérculos se logró con cepa de Trichoderma sp. 3 con 121.50 tubérculos/2.4m2 (10.13 tubérculos/planta); seguido de la cepa de Trichoderma sp. 5 con 107.50 tubérculos/2.4m2 (8.96 tubérculos/planta), los cuales estadísticamente fueron similares y superiores a los demás tratamientos. Mientras el testigo tuvo menor cantidad de tubérculos con 18.50 tubérculos/2.4m2 (1.54 tubérculos/planta). Por tanto, en la práctica milenaria de la sabiduría andina rescatamos el uso de cepas nativas de Trichoderma sp., para así contribuir en la solución de los problemas humano-ambientales y el uso sostenible de la cascara de papa en la región.

Referencias

  1. Altomare, C., Norvell, W. A., Björkman, T., & Harman, G. E. (1999). Solubilization of phosphates and micronutrients by the plant-growth- promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Applied and Environmental Microbiology, 65(7), 2926–2933. https://doi.org/10.1128/AEM.65.7.2926-2933.1999
  2. Baltazar, V. (2014). Evaluación del efecto de tres niveles de vermicompuesto en la tuberización de papa (Solanum tuberosum) a partir de tres cortes del esqueje de brote en Irupata. provincia Bustillos de Potos (Tesis Doctoral dissertation). 1–79.
  3. Bouhadjra, K., Lemlikchi, W., Ferhati, A., & Mignard, S. (2021). Enhancing removal efficiency of anionic dye (Cibacron blue) using waste potato peels powder. Scientific Reports, 11(1). https://doi.org/10.1038/S41598-020-79069-5
  4. Brotman, Y., & Gupta, J. (2010). Trichoderma, 20(9), 2. doi:10.1016/j.cub.2010.02.042
  5. Castro-Toro, A. M., & Rivillas-Osorio, C. A. (2005). Biorregulación de Rhizoctonia solani en germinadores de café. Avances Técnicos Cenicafé, 336(1), 1–8. https://www.cenicafe.org/es/publications/avt0336.pdf
  6. Choque Patty, G. N. (2019). Evaluación potencial productiva de papas nativas (Solanum spp.) para semilla - tubérculo a partir de brotes en ambiente protegido en dos comunidades del municipio de Tiahuanacu. http://repositorio.umsa.bo/xmlui/handle/123456789/23793
  7. Centro Internacional de la papa - CIP. (2008). CIP | SINIA | Sistema Nacional de Información Ambiental. https://sinia.minam.gob.pe/fuente-informacion/centro-internacional-papa-cip
  8. Contreras-Cornejo, H. A., Macías-Rodríguez, L., Cortés-Penagos, C., & López-Bucio, J. (2009). Trichoderma virens, a Plant Beneficial Fungus, Enhances Biomass Production and Promotes Lateral Root Growth through an Auxin-Dependent Mechanism in Arabidopsis. Plant Physiology, 149(3), 1579–1592. https://doi.org/10.1104/PP.108.130369
  9. Cubillos-Hinojosa, J., Valero, N., & Mejía, L. (2009). Trichoderma harzianum como promotor del crecimiento vegetal del maracuyá (Passiflora edulis var. flavicarpa Degener). Agronomía Colombiana, 27(1), 81-86.
  10. Dávila Rivera, A. J. (2014). Crecimiento radial aéreo y radicular de papa (Solanum tuberosum l.) En la var. Canchán mediante brotes y tubérculos.
  11. Ezeta, F. N. (2001). Producción de semilla de papa en Latinoamérica. Books.Google.Com, 12(1), 1–1. https://books.google.es/books?hl=es&lr=&id=D7a4m_elry4C&oi=fnd&pg=PA1&dq=11.%09Ezeta,+F.N.+(2001).+Producción+de+semilla+de+papa+en+Latinoamérica.+Revista+Latinoamericana+de+la+Papa+&ots=x-2V80Kdmo&sig=Yz7QW6tOWiv2SRClJPYmgYdGtgw
  12. García Crespo, R. G., Arcia Montesuma, M. A., Pérez Tortolero, M. R., & Riera Tona, R. F. (2012). Efecto de Trichoderma sobre el desarrollo de papa y el biocontrol de Rhizoctonia bajo tres tiempos de inicio de aplicación. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0002-192X2012000100007
  13. Gholami, L., & Rahimi, G. (2021). Efficiency of CH4N2S−modified biochar derived from potato peel on the adsorption and fractionation of cadmium, zinc and copper in contaminated acidic soil. Environmental Nanotechnology, Monitoring and Management, 16. https://doi.org/10.1016/J.ENMM.2021.100468
  14. Harman, G. E. (2007). Myths and Dogmas of Biocontrol Changes in Perceptions Derived from Research on Trichoderma harzinum T-22. Https://Doi.Org/10.1094/PDIS.2000.84.4.377, 84(4), 377–393. https://doi.org/10.1094/PDIS.2000.84.4.377
  15. Instituto de Investigación y Desarrollo de Comercio Exterior de la Cámara de Comercio de Lima - IDEXCAM. (2018). Papa, milenario producto andino. Lima, Perú. 36p. Consultado el 25/09/2021; 07:28 pm. Recuperado de web: https://www.camaralima.org.pe/repositorioaps/0/0/par/estudio4/papa,%20milenario%20producto%20andino.pdf
  16. Inostroza, J. (2020). Manual de papa para la Araucanía: Manejo y Plantación. http://bibliotecadigital.ciren.cl/handle/123456789/32024
  17. Liu, W. (1995). The colouration of nematode in plant tissue. Ci.Nii.Ac.Jp. https://ci.nii.ac.jp/naid/10017158271/
  18. Lopes, J., Gonçalves, I., Nunes, C., Teixeira, B., Mendes, R., Ferreira, P., & Coimbra, M. A. (2021). Potato peel phenolics as additives for developing active starch-based films with potential to pack smoked fish fillets. Food Packaging and Shelf Life, 28. https://doi.org/10.1016/J.FPSL.2021.100644
  19. Majee, S., Halder, G., Mandal, D. D., Tiwari, O. N., & Mandal, T. (2021). Transforming wet blue leather and potato peel into an eco-friendly bio-organic NPK fertilizer for intensifying crop productivity and retrieving value-added recyclable chromium salts. Journal of Hazardous Materials, 411. https://doi.org/10.1016/J.JHAZMAT.2021.125046
  20. Otiniano, R. (2017). Manual del cultivo de papa para pequeños productores en la sierra norte del Perú (p. 32). https://www.poderosa.com.pe/Content/descargas/libros/manual-del-cultivo-de-papa.pdf
  21. Pintado, H. L. (2011). Manual del cultivo de papa la Sierra sur. http://repositorio.iniap.gob.ec/bitstream/41000/2395/1/MANUAL 90 pdf.pdf
  22. Quispe Tito, A., Hilari Esteban, V. H., Casazola López, J. L., & Mamani Reynoso, F. (2018). Producción de semilla de tres variedades de papa nativa (Solanum andigenum sp.) a partir de brotes por trasplante directo e indirecto, en ambiente protegido de la UAC-Tiahuanacu. Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales, 5(1), 59–70. http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S2409-16182018000100008&lng=es&nrm=iso
  23. Sala, A., Vittone, S., Barrena, R., Sánchez, A., & Artola, A. (2021). Scanning agro-industrial wastes as substrates for fungal biopesticide production: Use of Beauveria bassiana and Trichoderma harzianum in solid-state fermentation. Journal of Environmental Management, 295. https://doi.org/10.1016/J.JENVMAN.2021.113113
  24. Sampaio, S. L., Petropoulos, S. A., Dias, M. I., Pereira, C., Calhelha, R. C., Fernandes, Â., Leme, C. M. M., Alexopoulos, A., Santos-Buelga, C., Ferreira, I. C. F. R., & Barros, L. (2021). Phenolic composition and cell-based biological activities of ten coloured potato peels (Solanum tuberosum L.). Food Chemistry, 363. https://doi.org/10.1016/J.FOODCHEM.2021.130360
  25. Shruthy, R., Jancy, S., & Preetha, R. (2021). Cellulose nanoparticles synthesised from potato peel for the development of active packaging film for enhancement of shelf life of raw prawns (Penaeus monodon) during frozen storage. International Journal of Food Science and Technology, 56(8), 3991–3999. https://doi.org/10.1111/IJFS.14551
  26. Singhvi, M., Maharjan, A., Thapa, A., Jun, H. B., & Soo Kim, B. (2021). Nanoparticle-associated single step hydrogen fermentation for the conversion of starch potato waste biomass by thermophilic Parageobacillus thermoglucosidasius. Bioresource Technology, 337. https://doi.org/10.1016/J.BIORTECH.2021.125490
  27. Ticona Quino, S. R. M. (2015). Producción de semilla pre - basica de papa (Solanum tuberosum L.) a patir de esquejes de brote de invernadero. http://repositorio.umsa.bo/xmlui/handle/123456789/5636
  28. Vásquez, V. (2013). Experimentación agrícola.... - Google Académico. https://scholar.google.es/scholar?hl=es&as_sdt=0%2C5&q=18.%09Vásquez%2C+V.+%282013%29.+Experimentación+agrícola.+Soluciones+con+SAS.&btnG=
  29. Verma, M., Brar, S. K., Tyagi, R. D., Surampalli, R. Y., & Valéro, J. R. (2007). Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochemical Engineering Journal, 37(1), 1–20. https://doi.org/10.1016/J.BEJ.2007.05.012
  30. Vunain, E., Njewa, J. B., Biswick, T. T., & Ipadeola, A. K. (2021). Adsorption of chromium ions from tannery effluents onto activated carbon prepared from rice husk and potato peel by H3PO4 activation. Applied Water Science, 11(9), 150. https://doi.org/10.1007/S13201-021-01477-3
  31. Yedidia, I., Srivastva, A. K., Kapulnik, Y., & Chet, I. (2001). Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant and Soil, 235(2), 235–242. https://doi.org/10.1023/A:1011990013955