Propiedades de pasta y texturales de las mezclas de harinas de quinua (Chenopodium quinoa), kiwicha (Amaranthus caudatus) y tarwi (Lupinus mutabilis) en un sistema acuoso

Julio Mauricio Vidaurre-Ruiz, Walter Francisco Salas-Valerio, Ritva Repo-Carrasco-Valencia

Resumen


El objetivo de la investigación fue evaluar los efectos de interacción de las harinas de quinua, kiwicha y tarwi en las propiedades de pasta (viscosidad pico, VP; viscosidad mínima, VM; viscosidad de retrogradación, VR; viscosidad final, VF) y texturales (firmeza, consistencia, cohesividad, índice de viscosidad) de los geles formados en un sistema acuoso utilizando el enfoque experimental del diseño de mezclas. Se formularon diez tratamientos, los cuales estuvieron compuestos por 3 ingredientes individuales, 3 mezclas binarias y 4 mezclas ternarias. Los resultados de esta investigación demuestran que la alta capacidad de absorción de agua y la ausencia de almidón de la harina de tarwi afectó significativamente los parámetros de viscosidad de las pastas, así como las propiedades texturales de los geles. La harina de kiwicha presentó mayor perfil de viscosidad (VP: 1188.5 cP; VM: 932.5 cP; VF: 1194.0 cP; VR: 261.5 cP), que la harina de quinua (VP: 147.5 cP; VM: 137.5 cP; VF: 336.5 cP; VR: 189.0 cP), sin embargo; se evidenciaron efectos no aditivos y no lineales en las propiedades de pasta y texturales de los geles cuando estas harinas se mezclaron en proporciones iguales. Las propiedades de pasta de las mezclas estuvieron altamente correlacionadas con las propiedades texturales de los geles (r = 0.73–0.92; p<0.05). Debido a las características reológicas y texturales especiales que pueden presentar las mezclas entre las harinas de quinua con tarwi o las harinas de kiwicha con tarwi resultarían promisorias para el desarrollo de productos de panificación libres de gluten.

 

ABSTRACT

The aim of this research was to evaluate the interaction effects of quinoa, kiwicha and tarwi flours in pasting properties (peak viscosity, VP; trough viscosity, VM; setback viscosity, VR; final viscosity, VF) and textural properties (firmness, consistency, cohesiveness, viscosity index) of the gels formed in an aqueous system using the experimental approach of mixture design. Ten treatments were formulated, which were composed of 3 individual ingredients, 3 binary mixtures, and 4 ternary mixtures. The results of this research show that the high-water absorption capacity and absence of starch from the tarwi flour significantly affected the viscosity parameters of the pastes, as well as the textural properties of the gels. kiwicha flour had a higher viscosity profile (VP: 1188.5 cP, VM: 932.5 cP, VF: 1194.0 cP, VR: 261.5 cP), than quinoa flour (VP: 147.5 cP, VM: 137.5 cP, VF: 336.5 cP; VR: 189.0 cP), however; non-additive and non-linear effects were observed in pasting and textural properties when these flours were mixed in equal proportions. Pasting properties of mixtures were highly correlated with the textural properties of the gels (r = 0.73-0.92, p<0.05). Due to the special rheological and textural characteristics that the mixtures between quinoa with tarwi or kiwicha with tarwi could have, they would be promising for the development of gluten-free bread products.

 


Palabras clave


Mezclas de granos andinos, quinua, kiwicha, tarwi, diseño de mezclas

Texto completo:

PDF

Referencias


AACC. (2010). AACCI Method 76-21.01. General Pasting Method for Wheat or Rye Flour or Starch Using the Rapid Visco Analyser (11th ed.). S. Paul, Minnesota: AACCI.

Alvarez-Jubete, L., Arendt, E. K., & Gallagher, E. (2010). Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends in Food Science and Technology, 21(2), 106–113. https://doi.org/10.1016/j.tifs.2009.10.014

Alvarez-Jubete, L., Auty, M., Arendt, E. K., & Gallagher, E. (2010). Baking properties and microstructure of pseudocereal flours in gluten-free bread formulations. European Food Research and Technology, 230(3), 437–445. https://doi.org/10.1007/s00217-009-1184-z

Angioloni, A., & Collar, C. (2009). Small and large deformation viscoelastic behaviour of selected fibre blends with gelling properties. Food Hydrocolloids, 23(3), 742–748. https://doi.org/10.1016/j.foodhyd.2008.04.005

AOAC. (2000). Official methods of analysis (17th ed). Gaithersburg, MD: Association of Official Analytical Chemists.

Cornell, J. A. (2011). A Primer on Experiments with Mixtures. Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/9780470907443

Horstmann, S. W., Foschia, M., & Arendt, E. K. (2017). Correlation analysis of protein quality characteristics with gluten-free bread properties. Food & Function, 8(7), 2465–2474. https://doi.org/10.1039/C7FO00415J

Inglett, G. E., Xu, J., Stevenson, D. G., & Chen, D. (2009). Rheological and Pasting Properties of Buckwheat (Fagopyrum esculentum Möench) Flours With and Without Jet-Cooking. Cereal Chemistry Journal, 86(1), 1–6. https://doi.org/10.1094/CCHEM-86-1-0001

Jacobsen, S.-E., & Mujica, A. (2006). El tarwi (Lupinus mutabilis Sweet.) y sus parientes silvestres. Botanica Economica de Los Andes Centrales- Universidad Mayor de San Andrés, 458–482.

Julianti, E., Rusmarilin, H., & Yusraini, E. (2017). Functional and rheological properties of composite flour from sweet potato, maize, soybean and xanthan gum. Journal of the Saudi Society of Agricultural Sciences, 16(2), 171–177. https://doi.org/10.1016/j.jssas.2015.05.005

Li, G., Wang, S., & Zhu, F. (2016). Physicochemical properties of quinoa starch. Carbohydrate Polymers, 137, 328–338. https://doi.org/10.1016/j.carbpol.2015.10.064

Obanni, M., & Bemiller, J. N. (1997). Properties of Some Starch Blends. Cereal Chemistry, 74(4), 431–436. https://doi.org/10.1094/CCHEM.1997.74.4.431

Repo-Carrasco, R., Hellström, J. K., Pihlava, J. M., & Mattila, P. H. (2010). Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chemistry, 120(1), 128–133. https://doi.org/10.1016/j.foodchem.2009.09.087

Rosell, C. M., Cortez, G., & Repo-Carrasco, R. (2009). Breadmaking use of andean crops quinoa, Kañiwa, Kiwicha, and Tarwi. Cereal Chemistry, 86(4), 386–392. https://doi.org/10.1094/CCHEM-86-4-0386

Sahagún, M., & Gómez, M. (2018). Assessing Influence of Protein Source on Characteristics of Gluten-Free Breads Optimising their Hydration Level. Food and Bioprocess Technology, 11(9), 1686–1694. https://doi.org/10.1007/s11947-018-2135-0

Sathe, S. K., Deshpande, S. S., & Salunkhe, D. K. (1982). Functional Properties of Lupin Seed (Lupinus mutabilis) Proteins and Protein Concentrates. Journal of Food Science, 47(2), 491–497. https://doi.org/10.1111/j.1365-2621.1982.tb10110.x

Schoenlechner, R., Mandala, I., Kiskini, A., Kostaropoulos, A., & Berghofer, E. (2010). Effect of water, albumen and fat on the quality of gluten-free bread containing amaranth. International Journal of Food Science and Technology, 45(4), 661–669. https://doi.org/10.1111/j.1365-2621.2009.02154.x

Sciarini, L. S., Ribotta, P. D., León, A. E., & Pérez, G. T. (2010). Influence of Gluten-free Flours and their Mixtures on Batter Properties and Bread Quality. Food and Bioprocess Technology, 3(4), 577–585. https://doi.org/10.1007/s11947-008-0098-2

Singh, N., Kaur, S., Kaur, A., Isono, N., Ichihashi, Y., Noda, T., & Rana, J. C. (2014). Structural, thermal, and rheological properties of Amaranthus hypochondriacus and Amaranthus caudatus starches. Starch/Staerke, 66(5–6), 457–467. https://doi.org/10.1002/star.201300157

Turkut, G. M., Cakmak, H., Kumcuoglu, S., & Tavman, S. (2016). Effect of quinoa flour on gluten-free bread batter rheology and bread quality. Journal of Cereal Science, 69, 174–181. https://doi.org/10.1016/j.jcs.2016.03.005

Vidaurre-Ruiz, J. M., Días-Rojas, G., Mendoza-Llamo, E., & Solano-Cornejo, M. (2017). Variación del contenido de betalaínas, compuestos fenólicos y capacidad antioxidante durante el procesamiento de la quinua (Chenopodium quinoa W.). Revista de la Sociedad Química del Perú, 83(3), 319–330.

Wrigley, C. (2003). The Lupin - The grain with no starch. Cereal Foods World, 48(1), 30–31.

Yilmaz, M. T., Yildiz, Ö., Yurt, B., Toker, O. S., Karaman, S., & Baştürk, A. (2015). A mixture design study to determine interaction effects of wheat, buckwheat, and rice flours in an aqueous model system. LWT - Food Science and Technology, 61(2), 583–589. https://doi.org/10.1016/j.lwt.2014.11.045

Ziobro, R., Witczak, T., Juszczak, L., & Korus, J. (2013). Supplementation of gluten-free bread with non-gluten proteins. Effect on dough rheological properties and bread characteristic. Food Hydrocolloids, 32(2), 213–220. https://doi.org/10.1016/j.foodhyd.2013.01.006




DOI: http://dx.doi.org/10.18271/ria.2019.441

Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2019 Julio Mauricio Vidaurre-Ruiz, Walter Francisco Salas-Valerio, Ritva Repo-Carrasco-Valencia

 

RIA está indizado en:



         




Google Académico

 


Licencia de Creative Commons

Revista Investigaciones Altoandinas -Journal of High Andean Research- de la Universidad Nacional del Altiplano de acceso abierto se distribuye gratuitamente bajo los términos de licencia Creative Commons Reconocimiento 4.0 Internacional License. Creado a partir de la obra http://huajsapata.unap.edu.pe/ria/  

 

Ciudad Universitaria, Av. Sesquicentenario No. 1150 - Puno  Perú. e-mail  ria.investigacion@unap.edu.pe,  fescobar@unap.edu.pe, Teléfono. +(051) 599430 Anexo 30104 - Celular  +951635035