MODELACIÓN DE LA DISPONIBILIDAD HÍDRICA DEL RIO PIURA - PERU, CONSIDERANDO LA INCIDENCIA DEL CAMBIO CLIMÁTICO

Ricardo F. León Ochoa, Domingo M. Portuguez Maurtua, Eduardo A. Chávarri Velarde

Resumen


Esta investigación evaluó los impactos del cambio climático en la oferta hídrica superficial en la subcuenca media y alta del río Piura, Perú, con el modelo hidrológico Soil and Water Assessment Tool (SWAT) a mediados del siglo XXI. El modelo SWAT fue calibrado y validado para un periodo de 23 años (1986 - 2008) utilizando datos de clima diarios en seis ubicaciones, y caudales mensuales en una ubicación. Para las evaluaciones a futuro, se adoptaron los datos climáticos HADGEM2-ES y CSI-RO-Mk3-6-0, de los modelos climáticos globales (MCG), Coupled Model Intercomparison Project Phase 5 (CMIP5), en los escenarios RCP4.5 y RCP8.5. Los datos sesgados futuros (2025‐2054) se corrigieron utilizando los datos del clima del período de referencia, y se redujeron de escala con el generador de clima MarkSim. La temperatura y precipitación en los escenarios de cambio climático proyectan un aumento promedio de + 2,9°C y 39,3%, respectivamente, respecto del periodo observado. La evapotranspiración futura mostro una tendencia general a disminuir, con un ligero aumento en el lado noroccidental de la cuenca. En particular, la tendencia promedio de la escorrentía mensual al 2050, en los cuatro escenarios, indica para los meses entre octubre a abril un aumento de + 71,8%, aprox. 55,9 m3/s; con el mayor incremento en noviembre. Por otro lado, entre los meses de mayo a setiembre, se tiene una disminución de ‐66,1%, aprox. 12 m3/s, con el mayor descenso en julio.

 

 

Abstract

This research evaluated climate change impacts on the streamflow offer in the middle and up-per Piura river basin in Peru using the Soil and Water Assessment Tool (SWAT) by the middle of the 21s century. The SWAT model was calibrated and validated for a period of 23 years (1986 - 2008) with daily weather data at six locations and monthly streamflow data at one location. For future evaluation, the HADGEM2-ES and CSIRO-Mk3-6-0, global climate models (GCM), climate data by Coupled Model Intercomparison Project Phase 5 (CMIP5) RCP4.5 and RCP8.5 of the Intergovernmental Panel on Climate Change (IPCC) were adopted. The future biased data (2025‐2054) were corrected using weather data of baseline period, and downscaled by the statistical method of MarkSim weather generator. The temperature and precipitation in the climate change scenarios projected an average increase of + 2.9°C and 39.3%, respectively, compared to the baseline condition. The future evapotranspiration showed a general tendency to decrease, with a slight increase in the north western region of the basin. In particular, the average trend of monthly streamflow to 2050s, in the four scenarios, indicates an increase of +71.8%, approx. 55.9 m3/s, from October to April with the highest increase in November. Whereas, from May to September, there is a decrease of -66.1%, approx. 12 m3/s, with the largest decrease in July.

Key words: Climate Change, CMIP5, General Circulation Models, Hydrological Modeling, SWAT.


Palabras clave


Cambio Climático, Disponibilidad Hídrica, Modelación Hidrológica, Modelos Climáticos Globales, SWAT.

Texto completo:

PDF

Referencias


Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., & Kløve, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733–752. DOI: https://doi.org/10.1016/j.jhydrol.2015.03.027

Abdo, K.S., Fiseha, B.M., Rientjes, T.H.M., Gieske, A.S.M., Haile, A.T. (2009). Assessment of climate change impacts on the hydrology of Gilgel Abay catchment in Lake Tana basin, Ethiopia. Hydrological Processes. 23, 3661–3669. DOI: https://doi.org/10.1002/hyp.7363

Alam S., Ali M.M., y Islam Z. (2016). Future streamflow of Brahmaputra River basin under synthetic climate change scenarios. Journal of Hydrologic Engineering, 21(11), 05016027. DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0001435

ANA. (2012). Diagnóstico de la gestión de los recursos hídricos de la cuenca Chira - Piura: Informe principal. Recuperado de: http://repositorio.ana.gob.pe/handle/ANA/1962

Anand, J., Gosain, A.K., y Khosa, R. (2018). Prediction of land use changes based on Land Change Modeler and attribution of changes in the water balance of Ganga basin to land use change using the SWAT model. Sci. Total Environ. 644, 503–519. DOI: https://doi.org/10.1016/j.scitotenv.2018.07.017

Arnold, J., y Fohrer, N. (2005). SWAT 2000: Current capabilities and research opportunities in applied watershed modelling. Hydrological Processes, 19(3):563-572. DOI: https://doi.org/10.1002/hyp.5611

Birhanu, B.Z., Ndomba, P.M. y Mtalo, F.W. (2007). Application of SWAT Model for Mountainous Catchment. Proceedings of LARS 2007. Catch. Lake Res., 182–187. Recuperado de: http://www.uni-siegen.de/zew/publikationen/volume0607/birhanu.pdf

Fitsum, B. (2015). Characterizing Current and Future Rainfall Variability and its Effect on Wheat and Barley Production in Sinana District, South Eastern Ethiopia (M.Sc. thesis). Haramaya University, Oromia, Etiopía. Recuperado de: https://www.ruforum.org/sites/default/files/Fitsum%20Msc%20thesis%20fina%20for%20submission.pdf

Garcia-Gonzalez, S. E. (2015). Streamflow Response to Land-cover Change in Southern Mexico: Projections of Water Balance in the Tulija River Watershed (M.Sc. thesis). The Pennsylvania State University, Pennsylvania, USA. Recuperado de: https://etda.libraries.psu.edu/files/final_submissions/10853

Ghaffari, G., Keesstra, S., Ghodousi, J., y Ahmadi, H. (2010). SWAT-simulated hydrological impact of land-use change in the Zanjanrood basin, Northwest Iran. Hydrological Processes, 24(7), pp.892–903. DOI: https://doi.org/10.1002/hyp.7530

IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, DOI: https://doi.org/10.1017/CBO9781107415324

Jones, P.G., y Thornton P.K. (2013). Generating downscaled weather data from a suite of climate models for agricultural modelling applications. Agricultural System, 114, 1-5. DOI: https://doi.org/10.1016/j.agsy.2012.08.002

Joo, J., Zhang, A., Li, X., y Zheng, C. (2017). Hydrological responses to climate shifts for a minimally disturbed mountainous watershed in northwestern China. Hydrol. Sci. J. 62, 1440–1455. DOI: https://doi.org/10.1080/02626667.2017.1316851

Li, T., y Gao, Y. (2015). Runoff and sediment yield variations in response to precipitation changes: a case study of Xichuan watershed in the loess plateau, China. WaterSA 7, 5638–5656. DOI: https://doi.org/10.3390/w7105638

Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., Seidl, R., Delzon, S., Corona, P., Kolström, M., et al., (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag.259, 698–709. DOI: https://doi.org/10.1016/j.foreco.2009.09.023

Muluneh, G. (2015). Analysis of Past and Future Intra-Seasonal Rainfall Variability and its Implications for Crop Production in the North Eastern Amhara Region, Ethiopia. (M.Sc. thesis). Haramaya University, Oromia, Etiopía. Recuperado de: https://www.ruforum.org/sites/default/files/Muluneh%20final%20MSc%20Thesis.pdf

Neitsch, S., Arnold, J., Kiniry, J., Srinivasan, R., y Williams, J. (2002). Soil and Water Assessment Tool User’s Manual: Version 2000. U.S. Department of Agriculture - Agricultural Research Service, Grassland Soil and Water Research Laboratory and Texas A&M University, Blackland Research and Extension Center, Temple, TX. 2002. Recuperado de: https://swat.tamu.edu/docs/

Neitsch, S., Arnold, J., Kiniry, J.; Srinivasan, R., y Williams, J. (2004). Soil and Water Assessment Tool Theoretical Documentation: Version 2005. Temple, Tex.: USDA-ARS Grassland, Soil and Water Research Laboratory. 2005. Recuperado de: https://swat.tamu.edu/docs/

Ramos, Y., (2014). Estimación del efecto del cambio climático en la precipitación en la costa norte del Perú usando simulaciones de según los modelos climáticos globales (tesis de pregrado). Universidad Nacional Agraria La Molina, Lima, Perú. Recuperado de: http://www.met.igp.gob.pe/publicaciones/2014/tesis_final_yakelyn_ramos.pdf

SENAMHI, Servicio Nacional de Meteorología e Hidrología. (2005). Escenarios del Cambio Climático en el Perú 2004 – 2050. Cuenca del río Piura. Recuperado de: http://siar.regionpiura.gob.pe/admDocumento.php?accion=bajar&docadjunto=216

Srinivasan, R. (2015). Soil and Water Assessment Tool Beginner SWAT Training Manual. Workshop at Spatial Science Laboratory. AgriLife Research. Texas A&M University. Recuperado de: http://www.crs4.it/repository/documents/conferences/swat_2015/introductory_manual_updated_oct._2012.pdf

Tyndall, Centre for Climate Change Research. (2004). New Indicators of Vulnerability and Adaptive Capacity. Technical Report. Recuperado de: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.112.2300&rep=rep1&type=pdf

Yang N., Men B.-H., y Lin C.-K. (2011). Impact Analysis of Climate Change on Water Resources. Procedia Engineering, 24, 643–648. DOI: https://doi.org/10.1016/j.proeng.2011.11.2710

Yates, D., y Angarita, H. (2014). Developing climate scenarios. Partnering for Adaptation and Resilience - Agua (PARA-AGUA) Project. Perú. University Corporation for Atmospheric Research, acting on behalf of The National Center for Atmospheric Research. AECOM International Development. Recuperado de: http://www.para-agua.net/component/k2/download/47_744e4500606b4afccf1fc7b45c86c971

Zheng, J., Li, G., Han, Z., y Meng, G. (2010). Hydrological Cycle Simulation of An Irrigation District Based on A SWAT model. Mathematical and Computer Modelling, 51(11-12), 1312–1318. DOI: https://doi.org/10.1016/j.mcm.2009.10.036




DOI: http://dx.doi.org/10.18271/ria.2019.476

Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2019 Ricardo F. León Ochoa, Domingo M. Portuguez Maurtua, Eduardo A. Chávarri Velarde

 

RIA está indizado en:



         




Google Académico

 


Licencia de Creative Commons

Revista Investigaciones Altoandinas -Journal of High Andean Research- de la Universidad Nacional del Altiplano de acceso abierto se distribuye gratuitamente bajo los términos de licencia Creative Commons Reconocimiento 4.0 Internacional License. Creado a partir de la obra http://huajsapata.unap.edu.pe/ria/  

 

Ciudad Universitaria, Av. Sesquicentenario No. 1150 - Puno  Perú. e-mail  ria.investigacion@unap.edu.pe,  fescobar@unap.edu.pe, Teléfono. +(051) 599430 Anexo 30104 - Celular  +951635035