Vol. 21 No. 3 (2019)
Original articles

Hypolipidemic effect of aqueous extract of Gentianella thyrsoidea (Hook.) Fabris (Japallanshacoc) in Sprague Dawley rats

Juan Huamán Saavedra
National University of Trujillo-Peru
Diego Reyes Carranza
National University of Trujillo-Peru
Ludisleydis Bermúdez Díaz
National University of Trujillo-Peru

Published 2019-07-25

Keywords

  • Gentianella thyrsoidea,
  • cholesterol,
  • triglycerides,
  • hyperlipidemia

How to Cite

Huamán Saavedra, J. ., Reyes Carranza, D. . ., & Bermúdez Díaz, L. . (2019). Hypolipidemic effect of aqueous extract of Gentianella thyrsoidea (Hook.) Fabris (Japallanshacoc) in Sprague Dawley rats. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 21(3), 165-172. https://doi.org/10.18271/ria.2019.474

Abstract

Gentianella thyrsoidea (Hook.) Fabris is an herbaceous species that grows in localities of the north of Peru, at 3800-4900 m.a.s.l. Despite the wide popular use, no studies have been found to determine its lipid-lowering activity, so this research is aimed to evaluate the hypolipidemic effect of aqueous extract of Gentianella thyrsoidea in Sprague Dawley rats with induced hyperlipidemic. Twenty-four male specimens of Rattus norvegicus Sprague Dawley strain were randomly divided into two experimental groups (EG1 and EG2) and one control group (CG). Every group was induced to hyperlipidemia by administration of 2.5 ml/day of fused tallow trough orogastric way per two weeks. They were given treatment for three weeks: aqueous extract of Gentianella thyrsoidea to experimental groups (250 mg/kg and 500 mg/kg respectively) and saline solution to control group. Basal, post-induction and post-treatment plasma lipid profile was measured. Cholesterol, triglycerides and LDL levels showed significant differences between groups (p <0.05) after treatment. Cholesterol decreased 20.7% and 19.4% in EG1 and EG2 respectively, in CG increased 0.91%; triglycerides decreased 49.63% and 41.55% in EG1 and EG2 respectively, in CG decreased 18.76% but it was not significant; LDL decreased 34.64% and 28.24% in EG1 and EG2 respectively, in CG increased by 7.58%. The aqueous extract of Gentianella thyrosidea significantly decreased the levels of total cholesterol, triglycerides and LDL, evidencing to be a therapeutic alternative for the treatment of dyslipidemias.

 

References

  1. Belayneh, Y. M., Birhanu, Z., Birru, E. M., & Getenet, G. (2019). Evaluation of in vivo antidiabetic, antidyslipidemic and in vitro antioxidant activities of hydromethanolic root extract of Datura stramonium L. (Solanaceae). Journal of experimental Pharmacology, 2019(11), 29–38. https://doi.org/10.2147/JEP.S192264
  2. Bermúdez Díaz, L., Cuéllar Cuéllar, A., Licham, M. A., & Huamán Saavedra, J. (2016). Hypoglycemic effect of Gentianella bicolor (Wedd.) fabris ex J.S. Pringle (Corpus Huay) in Sprague Dowley. Revista Cubana de Plantas Medicinales, 21(1), 31-41. http://scielo.sld.cu/pdf/pla/v21n1/pla04116.pdf
  3. Betancourt Morgado, E., González Madariaga, Y., Bermúdez Toledo, D., Escobar Román, R., Alonso Cáceres, B., & Blanco Machado, F. (2014). Evaluación del potencial hipolipemiante de dos plantas medicinales en un modelo de hiperlipidemia crónica. Revista Cubana de Plantas Medicinales, 19(3), 133–143. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1028-47962014000300002&lng=es&nrm=iso&tlng=es
  4. Brito, K. A., Lima, D. G., Farias, M. L., Rodrigues, A. L., Carvalho, B. V., Pereira, F. C., … Martins, D. M. (2019). Lycopene-Rich Extract from Red Guava (Psidium guajava L.) Decreases Plasma Triglycerides and Improves Oxidative Stress Biomarkers on Experimentally-Induced Dyslipidemia in Hamsters. Nutrients , 11(2), 393. https://doi.org/10.3390/nu11020393
  5. Bussmann, R W, Malca, G., Glenn, A., Sharon, D., Nilsen, B., Parris, B., … Townesmith, A. (2011). Toxicity of medicinal plants used in traditional medicine in Northern Peru. Journal of Ethnopharmacology, 137(1), 121—140. https://doi.org/10.1016/j.jep.2011.04.071
  6. Bussmann, Rainer W, Paniagua-Zambrana, N., Chamorro, M. R., Moreira, N. M., del Rosario Cuadros Negri, M. L., & Olivera, J. (2013). Peril in the market-classification and dosage of species used as anti-diabetics in Lima, Peru. Journal of Ethnobiology and Ethnomedicine, 9(1), 37. https://doi.org/10.1186/1746-4269-9-37
  7. Bussmann, Rainer W, Sharon, D., Vandebroek, I., Jones, A., & Revene, Z. (2007). Health for sale: the medicinal plant markets in Trujillo and Chiclayo, Northern Peru. Journal of Ethnobiology and Ethnomedicine, 3(1), 37. https://doi.org/10.1186/1746-4269-3-37
  8. Castillo Castillo, J. L., & Oscanoa Espinoza, T. J. (2016). Dislipidemia como factor de riesgo para enfermedad cerebrovascular: estudio de casos y controles. Horizonte Médico (Lima), 16(4), 13–19. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1727-558X2016000400003&lng=es&nrm=iso&tlng=es
  9. Castillo, S., Salinas, N., León, B., & Sánchez, I. (2013). Gentianaceae endémicas del Perú. Revista Peruana de Biología, 13(2), 339-354. https://doi.org/10.15381/rpb.v13i2.1860
  10. Ding, Z., Liu, Y., Ruan, J., Yang, S., Yu, H., Chen, M., … Wang, T. (2017). Bioactive Constituents from the Whole Plants of Gentianella acuta (Michx.) Hulten. Molecules, 22(8), 1309. doi: 10.3390/molecules22081309
  11. Feng, C.-Y., Wu, Q., Yin, D.-D., Li, B., Li, S.-S., Tang, Z.-Q., … Wang, L.-S. (2018). Determination of xanthones and flavonoids of methanol extracts obtained from different parts of the plants of three Gentianaceae species. Journal of Pharmaceutical and Biomedical Analysis, 161, 455–463. https://doi.org/10.1016/j.jpba.2018.08.059
  12. Friedewald, W. T., Levy, R. I., & Fredrickson, D. S. (1972). Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clinical Chemistry, 18(6), 499 LP – 502. http://clinchem.aaccjnls.org/content/18/6/499.abstract
  13. Hu, X., Zhang, Y., Xue, Y., Zhang, Z., & Wang, J. (2018). Berberine is a potential therapeutic agent for metabolic syndrome via brown adipose tissue activation and metabolism regulation. American Journal of Translational Research, 10(11), 3322–3329. https://www.ncbi.nlm.nih.gov/pubmed/30662589
  14. Instituto Nacional de Salud (Perú). (2008). Guía de Manejo y Cuidado de Animales de Laboratorio: Ratón. http://www.ins.gob.pe/insvirtual/images/otrpubs/pdf/GUIA_ANIMALES_RATON.pdf
  15. Jellinger, P. S., Handelsman, Y., Rosenblit, P. D., Bloomgarden, Z. T., Fonseca, V. A., Garber, A. J., … Davidson, M. (2017). American Association of Clinical Endocrinologists and American College of Endocrinology Guidelines for Management of Dyslipidemia and Prevention of Cardiovascular Disease. Endocrine Practice, 23(2), 1–87. https://doi.org/10.4158/EP171764.APPGL
  16. Lock de Ugaz, O. (1994). Investigacion Fitoquímica, Métodos en el estudio de productos naturales. (Segunda Ed.). Lima, Perú: Pontificia Universidad Católica del Perú.
  17. Málaga, G., Zevallos-Palacios, C., Lazo, M. de los Á., & Huayanay, C. (2010). Elevada frecuencia de dislipidemia y glucemia basal alterada en una población peruana de altura. Revista Peruana de Medicina Experimental y Salud Publica, 27(4), 557–61. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-46342010000400010&lng=es&nrm=iso&tlng=es
  18. Mineo, S., Noguchi, A., Nagakura, Y., Kobori, K., Ohta, T., Sakaguchi, E., & Ichiyanagi, T. (2015). Boysenberry Polyphenols Suppressed Elevation of Plasma Triglyceride Levels in Rats. Journal of Nutritional Science and Vitaminology, 61(4), 306–312. https://doi.org/10.3177/jnsv.61.306
  19. Paes, A. M. de A., Gaspar, R. S., Fuentes, E., Wehinger, S., Palomo, I., & Trostchansky, A. (2019). Lipid Metabolism and Signaling in Platelet Function. In: Trostchansky A., Rubbo H. (eds) Bioactive Lipids in Health and Disease. Advances in Experimental Medicine and Biology, vol 1127. Springer, Cham https://doi.org/10.1007/978-3-030-11488-6_7
  20. Ren, K., Su, H., Lv, L., Yi, L., Gong, X., Dang, L., … Li, M. (2019). Effects of Four Compounds from Gentianella acuta (Michx.) Hulten on Hydrogen Peroxide-Induced Injury in H9c2 Cells . BioMed Research International, 2019, 2692970. https://doi.org/10.1155/2019/2692970
  21. Šurinová, M., Brabec, J., & Münzbergová, Z. (2017). Development of SSR markers by 454 sequencing in the endemic species Gentianella praecox subsp. bohemica (Gentianaceae). Applications in Plant Sciences, 5(1), 1600114. https://doi.org/10.3732/apps.1600114
  22. Tomás Chota, G. E. (2000). Estudio Químico y Farmacológico de la Gentianella thyrsoidea Hooker Fabris. Revista de Química, XIV(1), 107–110. https://alicia.concytec.gob.pe/vufind/Record/NMSM_ba88459401e67d57e2d9c3e88bdd4695
  23. Tomás Chota, G. E., & Lock S., O. (2001). Aislamiento y caracterización de un triterpenoide a partir de la Gentianella thyrsoidea Hooker Fabris. Rev. Per. Quírn. Ing. Quím., 3(1), 30–35. https://revistasinvestigacion.unmsm.edu.pe/index.php/quim/article/view/4219.
  24. Wang, Z., Wu, G., Yu, Y., Liu, H., Yang, B., Kuang, H., & Wang, Q. (2018). Xanthones isolated from Gentianella acuta and their protective effects against H2O2-induced myocardial cell injury. Natural Product Research, 32(18), 2171–2177. https://doi.org/10.1080/14786419.2017.1371157