Vol. 19 Núm. 3 (2017)
Artículo breve

Arsénico total no deseado ante valores referenciales de ph en agua superficial, cuenca hidrográfica Sama, Región Tacna, Perú

Dante U. Morales Cabrera
Universidad Nacional Jorge Basadre Grohmann, Tacna, Perú
Edgardo Avendaño Cáceres
Universidad Nacional Jorge Basadre Grohmann, Tacna, Perú
Daniel Zevallos Ramos
Universidad Nacional Jorge Basadre Grohmann, Tacna, Perú
Julio Fernández Prado
Universidad Nacional Jorge Basadre Grohmann, Tacna, Perú
Zoila L. Mendoza Rodas
Universidad Nacional Jorge Basadre Grohmann, Tacna, Perú
Amparo Torres Ventura
Universidad Nacional Jorge Basadre Grohmann, Tacna, Perú

Publicado 2017-09-27

Cómo citar

Morales Cabrera, D. U. ., Avendaño Cáceres, E. ., Zevallos Ramos, D. . ., Fernández Prado, J. . ., Mendoza Rodas, Z. L. . ., & Torres Ventura, A. . . (2017). Arsénico total no deseado ante valores referenciales de ph en agua superficial, cuenca hidrográfica Sama, Región Tacna, Perú. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 19(3), 305-312. https://doi.org/10.18271/ria.2017.295

Resumen

El presente trabajo tiene como objetivo describir el comportamiento reproductivo estacional en ungulados hembras y machos, y la identificación de los factores que determinan la sincronía reproductiva. Se analizan los factores intrínsecos y extrínsecos que influyen en la estacionalidad reproductiva de ungulados. Los factores intrínsecos están relacionados con el mismo individuo ya sean características genotípicas y fenotípicas lo que implica que los aspectos reproductivos no pueden extrapolarse entre las distintas especies y se modifican por la acción de los factores externos como el fotoperiodo, disponibilidad de alimento, temperatura, latitud, entre otros. Dentro de los factores extrínsecos se identifican principalmente el fotoperiodo que está relacionado con la intensidad de luz y oscuridad a la que están expuestos los animales expresándose en la producción de melatonina, se describen los mecanismos de acción de esta hormona a nivel del sistema nervioso central (SNC), y sus efectos sobre la función reproductiva y por otro lado el factor nutricional que también es un importante regulador de la estacionalidad reproductiva, que podría estar estimulando el eje hipotálamo hipófisis, causando un efecto directo sobre la liberación de LH. A continuación se discuten las bases endocrinas que regulan la estacionalidad reproductiva comparada en especies pertenecientes a la subclase Eutheria, familias Bovidae, Camelidae, Equidae y Suidae, salvajes y domésticas.

 

Referencias

  1. Alamdar, A., Ali, S., Akber, M., Eqani, S., Hanif, N., Maria, S. & et al. (2016). Chemosphere Human exposure to trace metals and arsenic via consumption of fi sh from river Chenab, Pakistan and associated health risks. Chemosphere; 1-9. https://doi.org/10.1016/j.chemosphere.2016.10.110
  2. Alonso, D.L., Latorre, S., Castillo, E. & Brandão, P.F.B. (2014). Environmental occurrence of arsenic in Colombia : A review. Environmental Pollution; 186, 272-281. https://doi.org/10.1016/j.envpol.2013.12.009
  3. Argota, P.G. & Iannacone, O.J. (2016). Costo ambiental sostenible relative dado la variabilidad físicoquímica de las aguas sobre la disponibilidad de metals en el ecosistema San Juan, Santiago de Cuba-Cuba. The Biologist (Lima); 14(2), 219-232. http://sisbib.unmsm.edu.pe/bvrevistas/biologist/v14_n2/pdf/a05v14n2.pdf
  4. Argota, P.G. & Iannacone, O.J. (2017). Predicción cuantitativa mediante biomarcadores de uso permanente como nuevo criterio para biomonitores en ecotoxicología acuática. The Biologist (Lima); 17(1), 141-153. http://revistas.unfv.edu.pe/index.php/rtb/article/download/150/142
  5. Awrahman, Z.A., Rainbow, P.S., Smith, B.D., Khan, F.R., Bury, N.R. & Fialkowski, W. (2015). Bioaccumulation of arsenic and silver by the caddisfly larvae Hydropsyche siltalai and H . pellucidula : A biodynamic modeling approach. Aquatic Toxicology; 161, 196-207. https://doi.org/10.1016/j.aquatox.2015.01.004
  6. Bang, S. & Lee, S. (2009). Arsenic Removal from Vietnamese Groundwater Using the Arsenic-Binding DNA Aptamer. Environ Sci Technol; 43(24), 9335-93440. https://doi.org/10.1021/es902407g
  7. Calderón, J., Ortiz, P.D., Yáñez, L. & Díaz, B.F. (2003). Human exposure to metals. Pathways of exposure, biomarkers of effect, and host factors. Ecotoxicology and Environmental Safety; 56(1), 93-103. https://doi.org/10.1016/S0147-6513(03)00053-8
  8. Chi, S., Hu, J., Zheng, J. & Dong, F. (2017). Acta Ecologica Sinica Study on the effects of arsenic pollution on the communities of macro-invertebrate in Xieshui River. CHNAES, 37(1), 1-9. https://doi.org/10.1016/j.chnaes.2016.09.003
  9. Culioli, J., Fouquoire, A., Calendini, S., Mori, C. & Orsini, A. (2009). Trophic transfer of arsenic and antimony in a freshwater ecosystem : A field study. Aquatic Toxicology; 94, 286-293. https://doi.org/10.1016/j.aquatox.2009.07.016
  10. Dixit, R., Wasiullah, Malaviya, D., Pandiyan, K., Singh, U.B., Sahu, A. & et al. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability (Switzerland), 7(2), 2189-2212. https://doi.org/10.3390/su7022189
  11. Gall, J. E., Boyd, R. S. & Rajakaruna, N. (2015). Transfer of heavy metals through terrestrial food webs: a review. Environ Monit Assess; 187(4):201. https://doi.org/10.1007/s10661-015-4436-3
  12. Ghaeni, M., Pour, N. A. & Hosseini, M. (2015). Bioaccumulation of polychlorinated biphenyl (PCB), polycyclic aromatic hydrocarbon (PAH), mercury, methyl mercury and arsenic in blue crab Portunus segnis from Persian Gulf. Environ Monit Assess; 187(5):253 https://doi.org/10.1007/s10661-015-4459-9
  13. González, F.B., Rodríguez, V.E., Boente, C. & Menéndez, C.E. (2018). Science of the Total Environment Long-term ongoing impact of arsenic contamination on the environmental compartments of a former mining-metallurgy area. Science of the Total Environment, 610-611, 820-830. https://doi.org/10.1016/j.scitotenv.2017.08.135
  14. Hepp, L.U., Pratas, J.A.M.S. & Graça, M.A.S. (2017). Through food webs nor biodispersed to land. Ecotoxicology and Environmental Safety; 139, 132-138. https://doi.org/10.1016/j.ecoenv.2017.01.035
  15. Londoño, F.L.F., Londoño, M.P.T. & Muñoz, G.F.G. (2016). Los riesgos de los metales pesados en la salud humana y animal. Biotecnoloía en el sector agropecuario y agroindustrial; 14(2), 145. https://doi.org/10.18684/BSAA(14)145-153
  16. Molina, C.I., Ibañez, C. & Gibon, F.M. (2012). Proceso de biomagnificación de metales pesados en un lago hiperhalino (Poopó, Oruro, Bolivia): Posible riesgo en la salud de consumidores. Ecología en Bolivia; 47(2), 99-118.
  17. Montgomery C. (1991). Diseño y Análisis de Experimentos. Grupo Ed. Iberoamérica S.A de C.V. México DF.
  18. Normalization Standart International: ISO 5667-1. 1980. Water quality. Sampling. Part 1: Guidance on the design of sampling programmes.
  19. Normalization Standart International: ISO 5667-2. 1991. Water quality. Sampling. Part 2: Guidance on sampling techniques.
  20. Normalization Standart International: ISO 5667-3. 1994. Water quality. Sampling. Part 3: Guidance on the preservation and handling of samples.
  21. Norra, S., Chandrasekharam, D. & Stu, D. (2005). Impact of irrigation with As rich groundwater on soil and crops : A geochemical case study in West Bengal Delta Plain , India. Applied Geochemistry; 20, 1890-1906. https://doi.org/10.1016/j.apgeochem.2005.04.019
  22. Organization Word Health. (2004). Guidelines for drinking-water quality: recommendations. volume 1. WHO. http://www.who.int/water_sanitation_health/dwq/GDWQ2004web.pdf
  23. Qadir, A. & Malik, R.N. (2011). Heavy metals in eight edible fish species from two polluted tributaries (Aik and Palkhu) of the river Chenab, Pakistan. Biological Trace Element Research; 143(3), 1524-1540. https://doi.org/10.1007/s12011-011-9011-3
  24. Rai, A., Tripathi, P., Dwivedi, S., Dubey, S., Shri, M., Kumar, S. et al. (2011). Chemosphere Arsenic tolerances in rice (Oryza sativa) have a predominant role in transcriptional regulation of a set of genes including sulphur assimilation pathway and antioxidant system. Chemosphere; 82(7), 986-995. https://doi.org/10.1016/j.chemosphere.2010.10.070
  25. Rhea, D.T., Harper, D.D., Farag, M.A., & Brubaugh, B.W. (2006). Biomonitoring in the Boulder river watershed, Montana, USA: Metal concentrations in biofilm and macroinvertebrates and relations with macroinvertebrates assemblage. Environmental Monitoring and Assessment; 115: 381-393. https://doi.org/10.1007/s10661-006-7086-7
  26. Saldaña, R.A., Saldaña, R.N., Saldaña, R.A.L., Damian, A.C, Rangel, H.V.H. & Guerra, S.R (2017). Arsenic removal from aqueous solutions and the impact of humic and fulvic acids. Journal of Cleaner Production; 1-25. https://doi.org/10.1016/j.jclepro.2017.05.074
  27. Salgado, B.M., Ortiz, P.M.D., Calderón, A.E., Estrada, C.L., Niño, M.P., González, A.R. & Portales, P.D. (2010). Science of the Total Environment Pattern of expression of apoptosis and in fl ammatory genes in humans exposed to arsenic and / or fl uoride. Science of the Total Environment; 408(4), 760-767. https://doi.org/10.1016/j.scitotenv.2009.11.016
  28. Smedley, P.L., Zhang, M., Zhang, G. & Luo, Z. (2003). Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin. Inner Mongolia; 18, 1453-1477. https://doi.org/10.1016/S0883-2927(03)00062-3
  29. Statgraphics Plus for Windows: SGPW. (2001). Version 5.1. Copyright 1994-2001 for Statistical Graphics Corporation
  30. Subhani, M., Mustafa, I., Alamdar, A., Katsoyiannis, I.A., Ali, N., Huang, Q. & et al. (2015). Ecotoxicology and Environmental Safety Arsenic levels from different land-use settings in Pakistan: Bio-accu- mulation and estimation of potential human health risk via dust exposure. Ecotoxicology and Environmental Safety; 115, 187-194. https://doi.org/10.1016/j.ecoenv.2015.02.019
  31. Telford, K., Maher, A.W., Krikowa, A.F., Foster, A.S., Ellwood, M.J., Ashley, B.P.M. & et al. (2009). Bioaccumulation of antimony and arsenic in a highly contaminated stream adjacent to the Hillgrove Mine, NSW, Australia. Environ. Chem; 133-143. https://doi.org/10.1071/EN08097
  32. Wang, C., Hu, X., Gao, Y. & Ji, Y. (2015). ZnO Nanoparticles Treatment Induces Apoptosis by Increasing Intracellular ROS Levels in LTEP-a-2 Cells. BioMed Research International; 1-9. https://doi.org/10.1155/2015/423287
  33. Wang, S. & Mulligan, C.N. (2006). Occurrence of arsenic contamination in canada: sources, behavior and distribution. Science of the Total Environment; 366, 701-721. https://doi.org/10.1016/j.scitotenv.2005.09.005
  34. Wang, T., Lu, Y., He, G., Wang, T., Zhou, Y., Bi, C. & et al. (2016). Determination of water environment standards based on water quality criteria in China : Limitations and feasibilities ScienceDirect Determination of water environment standards based on water quality criteria in China : Limitations and feasibilities. Journal of Environmental Sciences; (December). https://doi.org/10.1016/j.jes.2016.11.010
  35. Yamani, J.S., Miller, S.M., Spaulding, M.L. & Zimmerman, J.B. (2012). Enhanced arsenic removal using mixed metal oxide impregnated chitosan beads. Water Research; 46(14), 4427-4434. https://doi.org/10.1016/j.watres.2012.06.004
  36. Zhang, L., Yang, H., Tang, J., Qin, X. & Yu, A. Y. (2014). Attenuation of arsenic in a karst subterranean stream and correlation with geochemical factors: A case study at Lihu, South China. Journal of Environmental Sciences; 26(11), 2222–2230. https://doi.org/10.1016/j.jes.2014.09.005
  37. Zhang, L., Yang, H., Tang, J., Qin, X. & Yu, A. Y. (2014). ScienceDirect Attenuation of arsenic in a karst subterranean stream and correlation with geochemical factors: A case study at Lihu, South China. Journal of Environmental Sciences; 26(11), 2222-2230. https://doi.org/10.1016/j.jes.2014.09.005