Arsenic total not desired to referential values of ph in surface water, Sama hydrographic basin, Tacna Region, Peru
Published 2017-09-27
How to Cite
Abstract
The aim of the following review is to describe the seasonal reproductive behavior in male and female ungulates, and identify the determinants of reproductive synchrony. Intrinsic and extrinsic factors that influence the reproductive seasonality of ungulates analyzed. Intrinsic factors are related to the same individual such as genotypic and phenotypic characteristics, and implies that the reproductive aspects can not be extrapolated between species and breeds, and are modified by the action of external factors such as photoperiod, availability of food, temperature, latitude, among others. Among these factors are identified primarily photoperiod and food availability. The photoperiod and food availability are the main signals that determine melatonin levels, and this modulates the reproductive function. Photoperiod is related to the intensity of light and darkness that animals are exposed to and is expressed in the production of melatonin. They describe that the mechanisms of action of this hormone in the central nervous system (CNS) to exert their effects on reproductive function. The nutritional factor is also an important regulator of reproductive seasonality, which could be stimulating the hypothalamic pituitary gland, causing a direct effect on LH release. Then endocrine basis regulating reproductive seasonality in species belonging to the subclass Eutheria, families Bovidae, Camelidae, Equidae and Suidae, wild and domestic, stating differences between them are discussed.
References
- Alamdar, A., Ali, S., Akber, M., Eqani, S., Hanif, N., Maria, S. & et al. (2016). Chemosphere Human exposure to trace metals and arsenic via consumption of fi sh from river Chenab, Pakistan and associated health risks. Chemosphere; 1-9. https://doi.org/10.1016/j.chemosphere.2016.10.110
- Alonso, D.L., Latorre, S., Castillo, E. & Brandão, P.F.B. (2014). Environmental occurrence of arsenic in Colombia : A review. Environmental Pollution; 186, 272-281. https://doi.org/10.1016/j.envpol.2013.12.009
- Argota, P.G. & Iannacone, O.J. (2016). Costo ambiental sostenible relative dado la variabilidad físicoquímica de las aguas sobre la disponibilidad de metals en el ecosistema San Juan, Santiago de Cuba-Cuba. The Biologist (Lima); 14(2), 219-232. http://sisbib.unmsm.edu.pe/bvrevistas/biologist/v14_n2/pdf/a05v14n2.pdf
- Argota, P.G. & Iannacone, O.J. (2017). Predicción cuantitativa mediante biomarcadores de uso permanente como nuevo criterio para biomonitores en ecotoxicología acuática. The Biologist (Lima); 17(1), 141-153. http://revistas.unfv.edu.pe/index.php/rtb/article/download/150/142
- Awrahman, Z.A., Rainbow, P.S., Smith, B.D., Khan, F.R., Bury, N.R. & Fialkowski, W. (2015). Bioaccumulation of arsenic and silver by the caddisfly larvae Hydropsyche siltalai and H . pellucidula : A biodynamic modeling approach. Aquatic Toxicology; 161, 196-207. https://doi.org/10.1016/j.aquatox.2015.01.004
- Bang, S. & Lee, S. (2009). Arsenic Removal from Vietnamese Groundwater Using the Arsenic-Binding DNA Aptamer. Environ Sci Technol; 43(24), 9335-93440. https://doi.org/10.1021/es902407g
- Calderón, J., Ortiz, P.D., Yáñez, L. & Díaz, B.F. (2003). Human exposure to metals. Pathways of exposure, biomarkers of effect, and host factors. Ecotoxicology and Environmental Safety; 56(1), 93-103. https://doi.org/10.1016/S0147-6513(03)00053-8
- Chi, S., Hu, J., Zheng, J. & Dong, F. (2017). Acta Ecologica Sinica Study on the effects of arsenic pollution on the communities of macro-invertebrate in Xieshui River. CHNAES, 37(1), 1-9. https://doi.org/10.1016/j.chnaes.2016.09.003
- Culioli, J., Fouquoire, A., Calendini, S., Mori, C. & Orsini, A. (2009). Trophic transfer of arsenic and antimony in a freshwater ecosystem : A field study. Aquatic Toxicology; 94, 286-293. https://doi.org/10.1016/j.aquatox.2009.07.016
- Dixit, R., Wasiullah, Malaviya, D., Pandiyan, K., Singh, U.B., Sahu, A. & et al. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability (Switzerland), 7(2), 2189-2212. https://doi.org/10.3390/su7022189
- Gall, J. E., Boyd, R. S. & Rajakaruna, N. (2015). Transfer of heavy metals through terrestrial food webs: a review. Environ Monit Assess; 187(4):201. https://doi.org/10.1007/s10661-015-4436-3
- Ghaeni, M., Pour, N. A. & Hosseini, M. (2015). Bioaccumulation of polychlorinated biphenyl (PCB), polycyclic aromatic hydrocarbon (PAH), mercury, methyl mercury and arsenic in blue crab Portunus segnis from Persian Gulf. Environ Monit Assess; 187(5):253 https://doi.org/10.1007/s10661-015-4459-9
- González, F.B., Rodríguez, V.E., Boente, C. & Menéndez, C.E. (2018). Science of the Total Environment Long-term ongoing impact of arsenic contamination on the environmental compartments of a former mining-metallurgy area. Science of the Total Environment, 610-611, 820-830. https://doi.org/10.1016/j.scitotenv.2017.08.135
- Hepp, L.U., Pratas, J.A.M.S. & Graça, M.A.S. (2017). Through food webs nor biodispersed to land. Ecotoxicology and Environmental Safety; 139, 132-138. https://doi.org/10.1016/j.ecoenv.2017.01.035
- Londoño, F.L.F., Londoño, M.P.T. & Muñoz, G.F.G. (2016). Los riesgos de los metales pesados en la salud humana y animal. Biotecnoloía en el sector agropecuario y agroindustrial; 14(2), 145. https://doi.org/10.18684/BSAA(14)145-153
- Molina, C.I., Ibañez, C. & Gibon, F.M. (2012). Proceso de biomagnificación de metales pesados en un lago hiperhalino (Poopó, Oruro, Bolivia): Posible riesgo en la salud de consumidores. Ecología en Bolivia; 47(2), 99-118.
- Montgomery C. (1991). Diseño y Análisis de Experimentos. Grupo Ed. Iberoamérica S.A de C.V. México DF.
- Normalization Standart International: ISO 5667-1. 1980. Water quality. Sampling. Part 1: Guidance on the design of sampling programmes.
- Normalization Standart International: ISO 5667-2. 1991. Water quality. Sampling. Part 2: Guidance on sampling techniques.
- Normalization Standart International: ISO 5667-3. 1994. Water quality. Sampling. Part 3: Guidance on the preservation and handling of samples.
- Norra, S., Chandrasekharam, D. & Stu, D. (2005). Impact of irrigation with As rich groundwater on soil and crops : A geochemical case study in West Bengal Delta Plain , India. Applied Geochemistry; 20, 1890-1906. https://doi.org/10.1016/j.apgeochem.2005.04.019
- Organization Word Health. (2004). Guidelines for drinking-water quality: recommendations. volume 1. WHO. http://www.who.int/water_sanitation_health/dwq/GDWQ2004web.pdf
- Qadir, A. & Malik, R.N. (2011). Heavy metals in eight edible fish species from two polluted tributaries (Aik and Palkhu) of the river Chenab, Pakistan. Biological Trace Element Research; 143(3), 1524-1540. https://doi.org/10.1007/s12011-011-9011-3
- Rai, A., Tripathi, P., Dwivedi, S., Dubey, S., Shri, M., Kumar, S. et al. (2011). Chemosphere Arsenic tolerances in rice (Oryza sativa) have a predominant role in transcriptional regulation of a set of genes including sulphur assimilation pathway and antioxidant system. Chemosphere; 82(7), 986-995. https://doi.org/10.1016/j.chemosphere.2010.10.070
- Rhea, D.T., Harper, D.D., Farag, M.A., & Brubaugh, B.W. (2006). Biomonitoring in the Boulder river watershed, Montana, USA: Metal concentrations in biofilm and macroinvertebrates and relations with macroinvertebrates assemblage. Environmental Monitoring and Assessment; 115: 381-393. https://doi.org/10.1007/s10661-006-7086-7
- Saldaña, R.A., Saldaña, R.N., Saldaña, R.A.L., Damian, A.C, Rangel, H.V.H. & Guerra, S.R (2017). Arsenic removal from aqueous solutions and the impact of humic and fulvic acids. Journal of Cleaner Production; 1-25. https://doi.org/10.1016/j.jclepro.2017.05.074
- Salgado, B.M., Ortiz, P.M.D., Calderón, A.E., Estrada, C.L., Niño, M.P., González, A.R. & Portales, P.D. (2010). Science of the Total Environment Pattern of expression of apoptosis and in fl ammatory genes in humans exposed to arsenic and / or fl uoride. Science of the Total Environment; 408(4), 760-767. https://doi.org/10.1016/j.scitotenv.2009.11.016
- Smedley, P.L., Zhang, M., Zhang, G. & Luo, Z. (2003). Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin. Inner Mongolia; 18, 1453-1477. https://doi.org/10.1016/S0883-2927(03)00062-3
- Statgraphics Plus for Windows: SGPW. (2001). Version 5.1. Copyright 1994-2001 for Statistical Graphics Corporation
- Subhani, M., Mustafa, I., Alamdar, A., Katsoyiannis, I.A., Ali, N., Huang, Q. & et al. (2015). Ecotoxicology and Environmental Safety Arsenic levels from different land-use settings in Pakistan: Bio-accu- mulation and estimation of potential human health risk via dust exposure. Ecotoxicology and Environmental Safety; 115, 187-194. https://doi.org/10.1016/j.ecoenv.2015.02.019
- Telford, K., Maher, A.W., Krikowa, A.F., Foster, A.S., Ellwood, M.J., Ashley, B.P.M. & et al. (2009). Bioaccumulation of antimony and arsenic in a highly contaminated stream adjacent to the Hillgrove Mine, NSW, Australia. Environ. Chem; 133-143. https://doi.org/10.1071/EN08097
- Wang, C., Hu, X., Gao, Y. & Ji, Y. (2015). ZnO Nanoparticles Treatment Induces Apoptosis by Increasing Intracellular ROS Levels in LTEP-a-2 Cells. BioMed Research International; 1-9. https://doi.org/10.1155/2015/423287
- Wang, S. & Mulligan, C.N. (2006). Occurrence of arsenic contamination in canada: sources, behavior and distribution. Science of the Total Environment; 366, 701-721. https://doi.org/10.1016/j.scitotenv.2005.09.005
- Wang, T., Lu, Y., He, G., Wang, T., Zhou, Y., Bi, C. & et al. (2016). Determination of water environment standards based on water quality criteria in China : Limitations and feasibilities ScienceDirect Determination of water environment standards based on water quality criteria in China : Limitations and feasibilities. Journal of Environmental Sciences; (December). https://doi.org/10.1016/j.jes.2016.11.010
- Yamani, J.S., Miller, S.M., Spaulding, M.L. & Zimmerman, J.B. (2012). Enhanced arsenic removal using mixed metal oxide impregnated chitosan beads. Water Research; 46(14), 4427-4434. https://doi.org/10.1016/j.watres.2012.06.004
- Zhang, L., Yang, H., Tang, J., Qin, X. & Yu, A. Y. (2014). Attenuation of arsenic in a karst subterranean stream and correlation with geochemical factors: A case study at Lihu, South China. Journal of Environmental Sciences; 26(11), 2222–2230. https://doi.org/10.1016/j.jes.2014.09.005
- Zhang, L., Yang, H., Tang, J., Qin, X. & Yu, A. Y. (2014). ScienceDirect Attenuation of arsenic in a karst subterranean stream and correlation with geochemical factors: A case study at Lihu, South China. Journal of Environmental Sciences; 26(11), 2222-2230. https://doi.org/10.1016/j.jes.2014.09.005