Published 2023-11-04
Keywords
- protocol, micropropagation, explant, auxin, cytokinin, buds
Copyright (c) 2023 Ladislao Cesar Romero Rivas, Javier J. Gonzales-Arteaga, Juan Rodríguez-Layza, Adelmo Párraga-Quintanilla, Julio A. Olivera-Soto
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Abstract
Strawberry (Fragaria x ananassa Duch.) is an important fruit for human consumption. It is species are vegetatively propagated by runners. At present, micropropagation is the most suitable way of commercial strawberry propagation. It is possible to produce disease-free plants through micropropagation. Plant growth regulators play an essential role in micropropagation of plants with traits of agronomic interest. The objective of this study was to develop a protocol for shoot multiplication and in vitro rooting of strawberry var. ‘Aromas’, using shoot buds as explants, cultivated in MS medium supplemented with different concentrations of plant growth regulators. For shoot multiplication, in vitro shoot clusters were used and cultivated in MS medium supplemented with different auxin and cytokinin concentrations. Shoots obtained in the best multiplication treatment after two months of cultivation, were used as a source of explants for in vitro rooting. The experiment was set up in a randomized complete block design. In multiplication phase number and length of shoots, and leaves per explant were measured. In rooting phase, root number per shoot and root length were recorded. MS medium supplemented with different concentration of BAP in combination with KIN and IAA showed no significant difference in terms of shoot number and shoot quality. In vitro rooting in MS medium with no growth regulators added, reached the best rooting formation, compared with the treatments with IBA and NAA. This demonstrate that explants used for in vitro rooting had enough endogenous plant growth regulators for rooting formation.
References
- Aaby, K., Mazur, S., Nes, A., & Skrede, G. (2012). Phenolic compounds in strawberry (Fragaria x ananassa Duch.) fruits: Composition in 27 cultivars and changes during ripening. Food Chemistry, 132(1), 86–97. https://doi.org/10.1016/j.foodchem.2011.10.037
- ADEX. (2020). Estudio De La Internalizacion Del Sector Agroindustrial Peruano. https://bit.ly/454Hvir
- Andrade, A., Gómez, L., Torres, Y., & Aguilera-Arango, G. (2021). Evaluación de medios de cultivo para el establecimiento, multiplicación y enraizamiento in vitro de mora (Rubus glaucus Benth.). Chilean Journal of Agricultural and Animal Sciences, Ex Agro-Ciencia, 37(2), 117–127. https://doi.org/10.29393/CHJAAS37-14EMAG40014
- Arista, J., Leiva, S., Guerrero, J. C., & Collazos, R. (2019). Efecto de las citoquininas en la multiplicación in vitro de cuatro variedades de Vaccinium corymbosum, a partir de segmentos nodales. Revista Científica UNTRM: Ciencias Naturales e Ingeniería, 2(2), 55–62. https://dx.doi.org/10.25127/ucni.v2i2.520
- Bhandari, M., & Roy, S. K. (2015). Standardization and establishment of an efficient protocol for in vitro multiplication of Strawberry plant and its genetic stability testing. International Journal of Pharmaceutical Science Invention ISSN, 4(8), 7–12. https://bit.ly/3rrUZah
- Dogan, S., Sahin, M., & Kaya, O. (2021). Researches on the Reproduction of “Ottoman Strawberry” with Tissue Culture. Alinteri Journal of Agricultural Sciences, 36(1), 27–32. https://doi.org/10.47059/alinteri/v36i1/ajas21005
- Dutta, C. & Sen, D. (2019). Vitro Propagation in Strawberry ( Fragaria x ananassa Duch .). Indian Journal of Hill Farming June, Special, 77–81. http://epubs.icar.org.in
- Dutta, C. (2022). Effect of Different Plant Growth Regulators on In-vitro Regeneration in Varieties of Strawberry. International Journal of Environment and Climate Change, 12(11), 1178–1187. https://doi.org/10.9734/IJECC/2022/v12i1131095
- Garzoli, S., Cairone, F., Carradori, S., Mocan, A., Menghini, L., Paolicelli, P., Ak, G., Zengin, G., & Cesa, S. (2020). Effects of processing on polyphenolic and volatile composition and fruit quality of clery strawberries. Antioxidants, 9(7), 1–18. https://doi.org/10.3390/antiox9070632
- Howlader, P., Bose, S. K., Ali, M., Robbani, M. M., & Papry, M. (2014). Invitro callus induction and plantlets regeneration in strawberry. Journal of the Bangladesh Society for Agricultural Science and Technology, 11(3 y 4), 53–56.
- Howlader, P., Kumar, S., & Robbani, M. (2016). In vitro plantlets regeneration of Strawberry through runner tip culture. Bangladesh Hort, 2(2), 51–57. https://bit.ly/3LC4bjd
- Jhajhra, S., Dashora, L. K., Singh, J., Bhatnagar, P., Kumar, A., & Arya, C. K. (2018). In-vitro Propagation of Strawberry (Fragaria × ananassa Duch.). International Journal of Current Microbiology and Applied Sciences, 7(10), 3030–3035. https://doi.org/10.20546/ijcmas.2018.710.353
- Jiménez, P., Barrera, P., Huachi, L., Vera, A., & Caicedo, C. (2020). Propagación in vitro de Quishuar (Buddleja incana Ruíz & Pav). La Granja, 31(1), 71–81. https://bit.ly/3LCHcV0
- Karim, R., Ahmed, F., Krishna Roy, U., Ara, T., Islam, R., & Hossain, M. (2015). Varietal improvement of Strawberry (Fragaria x ananassa Dutch.) through somaclonal variation using in vitro techniques. Journal of Agricultural Science and Technology, 17(4), 977–986.
- Kaur, H., Kaur, J., & Chahil, B. S. (2020). in Vitro Protocol Standardization for Growth and Rooting in Strawberry. Journal of Krishi Vigyan, 9(1), 193–201. https://doi.org/10.5958/2349-4433.2020.00158.0
- Kessel, A. (2012). Mejora Genética de la fresa (Fragaria ananassa Duch .), a través de metodos biotecnológicos. Cultivos Tropicales, 33(3), 34–41. https://bit.ly/3EPUlGC
- Lima, N. R., Moreno, J. A., Eras, V. H., Minchala, J., González, D., Yaguana, M., & Valarezo, C. (2018). Propagación in vitro de Cinchona officinalis L. a partir de semillas In. Revista de Investigaciones Altoandinas, 20(2), 169–178. http://dx.doi.org/10.18271/ria.2018.361
- Madumali, H. K. C., Abeythilakarathna, P. D., & Seran, T. H. (2021). Rooting performance of in vitro microshoots of strawberry (Fragaria x ananassa Duch.) as influenced by plant growth regulators. AGRIEAST: Journal of Agricultural Sciences, 15(2), 69–73. https://doi.org/10.4038/agrieast.v15i2.79
- Mehta, G., Godara, A., Sharma, A., & Kumar, R. (2021). Effect of plant growth regulators on rooting behaviour of in vitro strawberry cv. Winter Star. The Pharma Innovation Journal, 10(4), 866–869. http://www.thepharmajournal.com
- MINAGRI. (2008). Estudio de la fresa en el Perú y el Mundo. In Dirección General de Información Agraria. https://bit.ly/3Pp0mPu
- Mollohuanca, C., Mayta, L., & Bardales, R. (2021). Reguladores de crecimiento (BAP y ANA) en la propagación in vitro de Queñoa (Polylepis rugulosa Bitter). Manglar, 18(2), 207–213. https://doi.org/10.17268/manglar.2021.028
- Moreira-Palacios, M. O., Cabrera, H., Armijos, R., & Cueva-Agila, A. (2019). Germinación y multiplicación in vitro de Matricaria recutita L.: los fenoles totales determinan su germinación. Revista Colombiana de Biotecnología, 21(2), 6–11. https://doi.org/10.15446/rev.colomb.biote.v21n2.68509
- Naing, A. H., Kim, S. H., Chung, M. Y., Park, S. K., & Kim, C. K. (2019). In vitro propagation method for production of morphologically and genetically stable plants of different strawberry cultivars. Plant Methods, 15(1), 1–10. https://doi.org/10.1186/s13007-019-0421-0
- Nasir, S. M., & Abdulhussein, A. M. A. (2022). Effects of AgNO3 in combination with some plant growth regulators on micropropagation of strawberry ( Fragaria ananassa Duch ). Kufa Journal For Agricultural Sciences, 14(1), 33–40. https://bit.ly/46lW2aA
- Neri, J. C., Meléndez-Mori, J. B., Tejada-Alvarado, J. J., Vilca-Valqui, N. C., Huaman-Huaman, E., Oliva, M., & Goñas, M. (2022). An Optimized Protocol for Micropropagation and Acclimatization of Strawberry (Fragaria × ananassa Duch.) Variety ‘Aroma.’ Agronomy, 12(4), 1–11. https://doi.org/10.3390/agronomy12040968
- Pérez-Pérez, J. L., Fonseca-Yero, M., Bahi-Arevich, M., Silva-Pupo, J. J., & Werbrouck, S. (2020). Multiplicación in vitro de Morus alba L. variedad criolla en sistemas de inmersión temporal. Pastos y Forrajes, 43(3), 235–243. https://bit.ly/48qBrDU
- Quiroz, K. A., Berríos, M., Carrasco, B., Retamales, J. B., Caligari, P. D. S., & García-Gonzáles, R. (2017). Meristem culture and subsequent micropropagation of Chilean strawberry (Fragaria chiloensis (L.) Duch.). Biological Research, 50(20), 1–11. https://doi.org/10.1186/s40659-017-0125-8
- Sabbadini, S., Marcellini, M., Mezzetti, B., & Capocasa, F. (2021). Establishing micropropagation protocols for new strawberry (Fragaria × ananassa) breeding lines. Acta Horticulturae, 1309, 573–578. https://doi.org/10.17660/ActaHortic.2021.1309.82
- Steel, R., & Torrie, J. (1985). Bioestadistica: Principios y Procedimientos (2.a Ed.). McGraw-Hill, Bogota. https://n9.cl/a1zt4
- Tung, H. T., Thuong, T. T., Cuong, D. M., Luan, V. Q., Hien, V. T., Hieu, T., Nam, N. B., Phuong, H. T. N., Van The Vinh, B., Khai, H. D., & Nhut, D. T. (2021). Silver nanoparticles improved explant disinfection, in vitro growth, runner formation and limited ethylene accumulation during micropropagation of strawberry (Fragaria × ananassa). Plant Cell, Tissue and Organ Culture, 145(2), 393–403. https://doi.org/10.1007/s11240-021-02015-4
- Villa, R., & Arbeláez, L. (2019). Micropropagacion in vitro de Rosa rosa sp. a partir de yemas axilares y respuesta callogénica. Revista de La Asociación COlombiana de Ciencias Biológicas, 31, 10–17. https://doi.org/10.47499/revistaaccb.v1i31.176
- Villavicencio-Gutiérrez, E., Arellano-Ostoa, G., & Carranza-Pérez, M. A. (2022). Estabilidad del explante en la proliferación de brotes axilares in vitro de la biznaga. Revista Mexicana de Ciencias Agrícolas, 13(1), 53–64. https://doi.org/10.29312/remexca.v13i1.2309
- Villegas, J., & Palma, T. (2019). Multiplicación in vitro de Zingiber officinale Roscoe cv. ‘Gran Caimán’ en Sistema de Inmersión Temporal. Biotecnología Vegetal, 19(4), 297–306. https://bit.ly/46nwOZf