Vol. 20 Núm. 4 (2018)
Artículo original

Crio-tomografía de rayos X (Cryo-XT) de fábricas virales en células infectadas con Virus vaccinia

José Antonio Moreno-Serrano
Universidad Complutense de Madrid España
Tulio F. Solano Castillo
Universidad Complutense de Madrid España

Publicado 2018-10-29

Palabras clave

  • virus vaccinia,
  • cryo-tomografía de rayos X,
  • fábrica viral,
  • filamentos de actina

Cómo citar

Moreno-Serrano, J. A. ., & Solano Castillo, T. F. . (2018). Crio-tomografía de rayos X (Cryo-XT) de fábricas virales en células infectadas con Virus vaccinia. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 20(4), 409-418. https://doi.org/10.18271/ria.2018.418

Resumen

El VV (Vaccinia viurs) es uno de los virus más complejos, con un tamaño superior a 300 nm y más de 100 proteínas estructurales. Su montaje implica interacciones secuenciales y reordenamientos importantes de sus componentes estructurales. Se infectaron las células BSC40 y luego se seleccionaron mediante microscopía de fluorescencia de luz y posteriormente se formaron imágenes en el microscopio de rayos X en condiciones criogénicas. Se utilizaron series de inclinación tomográfica de imágenes de rayos X para producir reconstrucciones tridimensionales que muestran diferentes organelos celulares (núcleos, mitocondrias, RE), junto con otros dos tipos de partículas virales relacionadas con diferentes etapas de maduración del virus vaccinia (IV) inmaduros y (MV) partículas maduras;  los ensayos con witaferina mostraron enlaces con actina, que impide la polimerización y el alargamiento de los filamentos; causando viriones mal empaquetados o aberrantes, que inhibe la progresión de la infección viral. Los hallazgos demuestran que la cryo-tomografía de rayos X, es una poderosa herramienta para recolectar información estructural tridimensional a partir de células enteras congeladas, no fijadas y sin manchas con resolución suficiente para detectar diferentes partículas de virus que exhiben distintos niveles de maduración.

Referencias

  1. Agulleiro, J., & Fernandez, J. (2011). Fast tomographic reconstruction on multicore computers. Bioinformatics, 27(4), 582–583. doi: 10.1093/bioinformatics/btq692
  2. Blasco, R., & Moss, B. (1992). Role of cell-associated enveloped vaccinia virus in cell-to-cell spread. Journal of virology, 66(7):4170–4179. Retrieved from http://jvi.asm.org/c ontent/ 66/7/417 0.full.pdf +ht ml
  3. Carlier, M.F., Laurent, V., Santolini, J., Melki, R., Didry, D., Xia, G.X., Hong, Y., Chua, N.H., & Pantaloni, D. (1997). Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. The Journal of cell biology, 136(6), 1307-1322. doi: 10.1083/jcb.136.6.1307
  4. Chao, W., Harteneck, B., Liddle, J., Anderson, E., & Attwood, D. (2005). Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature, 435(7046), 1210–1213. doi: 10.1038/nature03719
  5. Chichón, F., Rodríguez, M., Pereiro, E., Chiappi, M., Perdiguero, B., Guttmann, P., & Carrascosa, J. (2012). Cryo X-ray nano-tomography of vaccinia virus infected cells. Journal of structural biology, 177(2), 202–211. doi: 10.1016/j.jsb.2011.12.001
  6. Chichon, F., Rodriguez, M., Risco, C., Fraile-Ramos, A., Fernandez, J., Esteban, M., & Carrascosa, J. (2009). Membrane remodelling during vaccinia virus morphogenesis. Biology of the Cell, 101(7), 401-414. doi: 10.1042/BC20080176
  7. Cyrklaff, M., Linaroudis, A., Boicu, M., Chlanda, P., Baumeister, W., Griffiths, G., & Krijnse-Locker, J. (2007). Whole cell cryo-electron tomography reveals distinct. PLoS one, 2(5), e420. doi: 10.1371/journal.pone.0000420
  8. Cyrklaff, M., Risco, C., Fernandez, J., Jimenez, M., Esteban, M., Baumeister, W., & Carrascosa, J. (2005). Cryo-electron tomography of vaccinia virus. Proceedings of the National Academy of Sciences of the United States of America, 102(8), 2772-2777. doi: 10.1073/pnas.0409825102
  9. Dallo, S., Maa, J., Rodriguez, J., Rodriguez, D., & Esteban, M. (1989). Humoral immune response elicited by highly attenuated variants of vaccinia virus and by an attenuated recombinant expressing HIV-1 envelope protein. Virology, 173(1), 323-329. doi: 10.1016/0042-6822(89)90250-X
  10. Ding, S., Diep, J., Feng, N., Ren, L., Li, B., Ooi, Y. S., ... & Kuo, C. J. (2018). STAG2 deficiency induces interferon responses via cGAS-STING pathway and restricts virus infection. Nature communications, 9(1), 1485. doi: 10.1038/s41467-018-03782-z
  11. Esteban, M. (1984). Defective vaccinia virus particles in interferon-treated infected cells. Virology, 133(1), 220-227. doi: 10.1016/0042-6822(84)90443-4
  12. Frank, J. (Ed.). (2006). Electron Tomography: methods for three-dimensional visualization of structures in the cell. Springer Science & Business Media. Retrieved from https://books.google.es/books?hl=es&lr=&id=LWx6JKQy34AC&o i=fnd&pg=PA1&dq=Frank,+J.+(2006).+Electron+Tomography,+Methods+for+Three-dimensional+Visualization+of+Structures+in+the+Cell.+New+York:+Springer .&ots=RnRR_wlrIP&sig=IAQZUD6bquYLuaulwhvr0weoQvo#v=onepage&q=Frank%2C%20J.%20(2006).%20Electron%20Tomography%2C%20Methods%20for%20Three-dimensional%20Visualization%20of%20Structures%20in%20the%20Ce ll.%20New%20York%3A%20Springer.&f=false
  13. Galkin, V., Orlova, A., Vos, M., Schröder, G., & Egelman, E. (2015). Near-atomic resolution for one state of F-actin. Structure, 23, 173-182. doi: 10.1016/j.str.2014.11.006
  14. Gu, W., Etkin, L., Le-Gros, M., & Larabell, C. (2007). X-ray tomography of Schizosaccharomyces pombe. Differentiation, 75(6), 529–535. doi: 10.1111/j.1432-0436.2007.00180.x
  15. Guttmann, P., Zeng, X., Feser, M., Heim, S., Yun, W., & Schneider, G. (2009). Ellipsoidal capillary as condenser for the BESSY full-field X-ray microscope. In Journal of Physics: Conference Series (Vol. 186, No. 1, p. 012064). IOP Publishing. Retrieved from http://iopscience.iop.org/article/10.1088/17426596/ 186/1/012064/meta#artAbst
  16. Grossegesse, M., Doellinger, J., Fritsch, A., Laue, M., Piesker, J., Schaade, L., & Nitsche, A. (2018). Global ubiquitination analysis reveals extensive modification and proteasomal degradation of cowpox virus proteins, but preservation of viral cores. Scientific reports, 8(1), 1807. doi: 10.1038/s41598-018-20130-9
  17. Harkiolaki, M., Darrow, M. C., Spink, M. C., Kosior, E., Dent, K., & Duke, E. (2018). Cryo-soft X-ray tomography: using soft X-rays to explore the ultrastructure of whole cells. Emerging Topics in Life Sciences, 2(1), 81-92. doi: 10.1042/ETLS20170086
  18. Hobbs, S. J., Osborn, J. F., & Nolz, J. C. (2018). Activation and trafficking of CD8+ T cells during viral skin infection: immunological lessons learned from vaccinia virus. Current opinion in virology, 28, 12-19. doi: 10.1016/j.coviro.2017.10.001
  19. Hollinshead, M., Rodger, G., Van Eijl, H., Law, M., Hollinshead, R., Vaux, D., & Smith, G. (2001). Vaccinia virus utilizes microtubules for movement to the cell surface. Journal of Cell Biology, 154(2), 389-402. doi: 10.1083/jcb.200104124
  20. Huang, X., Li, S., & Gao, S. (2018). Exploring an optimal wavelet-based filter for cryo-ET imaging. Scientific reports, 8(1), 2582. doi: 10.1038/s41598-018-20945-6
  21. Jiménez-Lamana, J., Szpunar, J., & Łobinski, R. (2018). New Frontiers of Metallomics: Elemental and Species-Specific Analysis and Imaging of Single Cells. In Metallomics (pp. 245-270). Springer, Cham. doi: 10.1007/978-3-319-90143-5_10
  22. Katsafanas, G., & Moss, B. (2007). Colocalization of transcription and translation within cytoplasmic poxvirus factories coordinates viral expression and subjugates host functions. Cell Host Microbe, 2(4): 221–228. doi: 10.1016/j.chom.2007.08.005
  23. Kremer, J., Mastronarde, D., & McIntosh, J. (1996). Computer visualization of three-dimensional image data using IMOD. Journal of structural biology, 116(1), 71–76. doi: 10.1006/jsbi.1996.0013.
  24. Lau, C., Hunter, M. J., Stewart, A., Perozo, E., & Vandenberg, J. I. (2018). Never at rest: insights into the conformational dynamics of ion channels from cryo‐electron microscopy. The Journal of physiology, 596(7), 1107-1119.
  25. Lehmann, M., Sherer, N., Marks, C., Pypaert, M., & Mothes, W. (2005). Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. The Journal of cell biology, 170(2), 317-325. doi: 10.1083/jcb.200503059
  26. Liu, R., & Moss, B. (2018). Vaccinia Virus C9 Ankyrin Repeat/F-Box Protein Is a Newly Identified Antagonist of the Type I Interferon-Induced Antiviral State. Journal of virology, 92(9), e00053-18. doi: 10.1128/JVI.00053-18
  27. Maurer, U. E., Sodeik, B., & Grünewald, K. (2008). Native 3D intermediates of membrane fusion in herpes simplex virus 1 entry. Proceedings of the National Academy of Sciences, 105(30), 10559-10564. doi: 10.1073/pnas.0801674105
  28. Moss, B. (2007). Poxviridae: The viruses and their replication (Knipe DM, Howley PM ed.). Philadelphia: Lippincott Williams & Wilkins. p. 2905-2946.
  29. Mueller, J., Pfanzelter, J., Winkler, C., Narita, A., Le Clainche, C., Nemethova, M., Carlier, M.F., Maeda, Y., Welch, M.D., Ohkawa, T., & Schmeiser, C. (2014). Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion. PLoS biology, 12(1), e1001765. doi: 10.1371/journal.pbio.1001765
  30. Parkinson, D., McDermott, G., Etkin, L., Le-Gros, M., & Larabell, C. (2008). Quantitative 3D imaging of eukaryotic cells using soft X-ray tomography. Journal of structural biology, 162(3), 380-386. doi: 10.1016/j.jsb.2008.02.003
  31. Ploubidou, A., Moreau, V., Ashman, K., Reckmann, I., González, C., & Way, M. (2000). Vaccinia virus infection disrupts microtubule organization and centrosome function. The EMBO journal, 19(15), 3932-3944. doi: 10.1093/emboj/19.15.3932
  32. Rodriguez, D., Barcena, M., Mobius, W., Schleich, S., Esteban, M., Geerts, W. Locker, J. (2006). A vaccinia virus lacking A10L: viral core proteins accumulate on structures derived from the endoplasmic reticulum. Cellular microbiology, 8(3), 427-437. doi: 10.1111/j.1462-5822.2005.00632.x
  33. Schneider, G. (1998). Cryo X-ray microscopy with high spatial resolution in amplitude and phase contrast. Ultramicroscopy, 75(2), 85–104. doi: 10.1016/S0304-3991(98)000 54-0
  34. Schneider, G., Guttmann, P., Heim, S., Rehbein, S., Eichert, D., & Niemann, B. (2007, January). X‐Ray Microscopy at BESSY: From Nano‐Tomography to Fs‐Imaging. In AIP Conference Proceedings (Vol. 879, No. 1, pp. 1291-1294). AIP. doi: 10.1063/1.2436300
  35. Schramm, B., & Krijnse-Locker, J. (2005). Cytoplasmic organization of poxvirus DNA replication. Traffic, 6(10), 839–846. doi: 10.1111/j.1600-0854.2005.00324.x
  36. Small, J. (2015). Pushing with actin: from cells to pathogens. Biochemical Society Transactions, 43, 84-91.
  37. Tolonen, N., Doglio, L., Schleich, S., & Krijnse-Locker, J. (2001). Vaccinia virus DNA replication occurs in endoplasmic reticulum-enclosed cytoplasmic mini-nuclei. Molecular biology of the cell, 12(7), 2031-2046. doi: 10.1091/mbc.12.7.2031
  38. Zeng, X., Duewer, F., Feser, M., Huang, C., Lyon, A., Tkachuk, A., & Yun, W. (2008). Ellipsoidal and parabolic glass capillaries as condensers for X-ray microscopes. Applied optics, 47(13), 2376-2381. doi: 10.1364/AO.47.002376
  39. Zong, C., Xu, M., Xu, L. J., Wei, T., Ma, X., Zheng, X. S., ... & Ren, B. (2018). Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chemical reviews, 118(10), 4946-4980. doi: 10.1021/acs.chemrev.7b00668