Vol. 24 No. 3 (2022)
Original articles

Low-cost sensors for fine particulate matter (PM2.5) characterization in a high Andean city

Jesús Ulloa Ninahuamán
Facultad de Ingeniería de Sistemas, Universidad Nacional del Centro del Perú
Bio
Daniel Martin Alvarez-Tolentino
Universidad Nacional Intercultural de la Selva Central Juan Santos Atahualpa
Bio
Anieval Peña Rojas
Facultad de Ingeniería de Sistemas, Universidad Nacional del Centro del Perú
Bio
Luis Suarez-Salas
Observatorio de Huancayo, Instituto Geofísico del Perú
Bio

Published 2022-08-25

Keywords

  • Temporal variation,
  • source of origin,
  • Huancayo,
  • low-cost sensors,
  • PM2.5

How to Cite

Ulloa Ninahuamán, J., Alvarez-Tolentino, D. M., Peña Rojas, A., & Suarez-Salas, L. (2022). Low-cost sensors for fine particulate matter (PM2.5) characterization in a high Andean city. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 24(3), 199-207. https://doi.org/10.18271/ria.2022.468

Abstract

Huancayo is a city located at Peruvian Central Andes and presents air pollution problems related to particulate matter (PM), especially fine fraction (PM2.5). Given the high costs of air quality monitoring network infrastructure and the need for more detailed information, the objective of the study is to evaluate the temporal variation and source zones of PM2.5 through the use of low-cost sensors installed at three sites in the city of Huancayo. PurpleAir PA-II model PMS5003 sensors were employed from August 2018 to June 2019. The dataset was subjected to statistical tests to evaluate temporal changes. Backtrajectories were calculated through the HYSPLIT model for source zone identification. The results show reasonable agreement with other reference monitoring. The importance of the use of low-cost sensors in the establishment of an air quality monitoring network in high Andean areas is highlighted and the determination of emission sources.

References

  1. Alfano, B., Barretta, L., Del Giudice, A., De Vito, S., Di Francia, G., Esposito, E., Formisano, F., Massera, E., Miglietta, M.L., Polichetti, T., 2021. A review of low-cost particulate matter sensors from the developers’ perspectives (Sensors. Sensors 21, 1–56. https://doi.org/10.3390/s21093060
  2. Estevan, R., Martínez-Castro, D., Suarez-Salas, L., Moya, A., Silva, Y., 2019. Atmospheric Environment : X First two and a half years of aerosol measurements with an AERONET sunphotometer at the Huancayo Observatory, Peru. Atmos. Environ. X 3, 100037. https://doi.org/10.1016/j.aeaoa.2019.100037
  3. Hamanaka, R.B., Mutlu, G.M., 2018. Particulate Matter Air Pollution: Effects on the Cardiovascular System. Front Endocrinol 9, 1–15. https://doi.org/10.3389/fendo.2018.00680
  4. Huamán De La Cruz, A., Bendezu Roca, Y., Suarez-Salas, L., Pomalaya, J., Alvarez Tolentino, D., Gioda, A., 2019. Chemical Characterization of PM2.5 at Rural and Urban Sites around the Metropolitan Area of. Atmosphere (Basel). 10, 1–17. https://doi.org/10.3390/atmos10010021
  5. Huaman De La Cruz, A.R., Huamán De La Cruz, J.K., Alvarez Tolentino, D., Gioda, A., 2018. Trace element biomonitoring in the Peruvian andes metropolitan region using Flavoparmelia caperata lichen. Chemosphere 210, 849–858. https://doi.org/10.1016/j.chemosphere.2018.07.013
  6. Iannone, R., 2016. SplitR: v0.4 (Version v0.4).
  7. IGP, 2005. Vulnerabilidad actual y futura ante el cambio climático y medidas de adaptación en la cuenca del río Mantaro.
  8. Liu, H., Schneider, P., Haugen, R., Vogt, M., 2019. Performance Assessment of a Low-Cost PM 2.5 Sensor for a near Four-Month Period in Oslo, Norway. Atmosphere (Basel). 10, 1–19. https://doi.org/10.3390/atmos10020041
  9. Malings, C., Tanzer, R., Hauryliuk, A., Saha, P.K., Robinson, A.L., 2018. Fine Particle Mass Monitoring with Low-Cost Sensors : Corrections and Long-Term Performance Evaluation. ESSOAr 1–21. https://doi.org/10.1002/essoar.10500022.2
  10. Martins, N.R., Carrilho da Graça, G., 2018. Impact of PM2.5 in indoor urban environments: A review. Sustain. Cities Soc. 42, 259–275. https://doi.org/10.1016/j.scs.2018.07.011
  11. Masri, S., Rea, J., Wu, J., 2022. Use of Low-Cost Sensors to Characterize Occupational Exposure to PM2.5 Concentrations Inside an Industrial Facility in Santa Ana, CA: Results from a Worker-and Community-Led Pilot Study. Atmosphere (Basel). 13. https://doi.org/10.3390/atmos13050722
  12. Morawska, L., Thai, P., Liu, X., Asumadu-Sakyi, A., Ayoko, G., Bartonova, A., Bedini, A., Chai, F., Christensen, B., Dunbabin, M., Gao, J., Hagler, G., Jayaratne, R., Kumar, P., Lau, A., Louie, P., Mazaheri, M., Ning, Z., Motta, N., Mullins, B., Rahman, M., Ristovski, Z., Shafiei, M., Tjondronegoro, D., Westerdahl, D., Williams, R., 2018. Applications of low-cost sensing technologies for air quality monitorin and exposure assessment: How far have they gone? Env. Int. 116, 286–299. https://doi.org/10.1016/j.envint.2018.04.018.Submit
  13. Moya Alvarez, A.S., Arredondo, R.E., Yuli Posadas, R.Á., 2017. Determinación de la presencia de partículas (PM10) en Perú producidas por quema de biomasa con ayuda de modelos numéricos. Rev. Int. Contam. Ambient. 33, 99–108. https://doi.org/10.20937/RICA.2017.33.01.09
  14. Municipalidad Provincial de Huancayo, 2012. Plan vial provincial participativo de Huancayo 2012-2021. Huancayo, Perú.
  15. Municipalidad Provincial de Huancayo, 2017. Plan Provincial de Seguridad Ciudadana. Huancayo, Perú.
  16. Municipalidad Provincial de Huancayo, M., 2006. Plan de Desarrollo Urbano Huancayo 2006-2011.
  17. Pöschl, U., 2005. Atmospheric aerosols: Composition, transformation, climate and health effects. Angew. Chemie - Int. Ed. 44, 7520–7540. https://doi.org/10.1002/anie.200501122
  18. R Core Team, 2015. R: A Language and Environment for Statistical Computing, R Foundati. ed. Vienna, Austria.
  19. Sayahi, T., Butterfield, A., Kelly, K.E., 2019. Long-term field evaluation of the Plantower PMS low-cost particulate matter sensors. Environ. Pollut. 245, 932–940. https://doi.org/10.1016/j.envpol.2018.11.065
  20. SENAMHI, 2018. Celebraciones de Año Nuevo 2018 incrementaron contaminación del aire de Lima [WWW Document]. https://www.senamhi.gob.pe/main.php?dp=lima&p=prensa&n=768
  21. Silva, Y., Takahashi, K., Chávez, R., 2008. Dry and wet rainy seasons in the Mantaro river basin (Central Peruvian Andes). Adv. Geosci. 14, 261–264. https://doi.org/10.5194/adgeo-14-261-2008
  22. South Coast Air Quality Management District (SCAQMD), 2016. Digital universal particle concentration sensor: PMS5003 series data manual [WWW Document]. https://www.aqmd.gov/docs/default-source/aq-spec/resources-page/plantower-pms5003-manual_v2-3.pdf.
  23. Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.;Cohen M.D.; Ngan, F., 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Am. Meteorol. Soc. 96, 2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1
  24. Suarez- Salas, L., Torres, C., Helmig, D., Hueber, J., 2017. Medición y analisis del aerosol de carbono negro en el Observatorio de Huancayo, Perú. Rev. Boliv. Física 30, 7–15.
  25. Suarez-Salas, L., Alvarez Tolentino, D., Bendezú, Y., Pomalaya, J., 2017. Caracterización química del material particulado atmosférico del centro urbano de Huancayo, Perú. Rev. Soc. Quím Perú 83, 187–199.
  26. Vivanco Cristobal, S. V., 2014. Variabilidad temporal de aerosoles atmosféricos en Huancayo. Apunt. Cienc. Soc. 4, 57–68.
  27. Zheng, T., Bergin, M.H., Johnson, K.K., Tripathi, S.N., Shirodkar, S., Landis, M.S., Sutaria, R., Carlson, D.E., 2018. Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments. Atmos. Meas. Tech. 11, 4823–4846.