Vol. 22 Núm. 3 (2020)
Artículo original

Aislamiento de bacterias con potencial biorremediador y análisis de comunidades bacterianas de zona impactada por derrame de petróleo en Condorcanqui (Amazonas, Perú)

Rosita T. Castillo Rogel
Facultad de Ciencias, Universidad Nacional de Piura, Perú
Biografía
Francis J. More Calero
Empresa de investigación y capacitación en Biotecnología Molecular, IncaBiotec, Tumbes, Perú
Melitza Cornejo La Torre
Cooperativa de trabajadores Biotecoop, Lima, Perú
Jaime N. Fernández Ponce
Facultad de Ciencias, Universidad Nacional de Piura, Perú
Eric L- Mialhe Matonnier
Empresa de investigación y capacitación en Biotecnología Molecular, IncaBiotec, Tumbes, Perú

Publicado 2020-09-04

Palabras clave

  • agua,
  • bacterias,
  • hidrocarburos,
  • metagenómica,
  • suelo

Cómo citar

Castillo Rogel, R. T., More Calero, F. J., Cornejo La Torre, M., Fernández Ponce, J. N., & Mialhe Matonnier, E. L.-. (2020). Aislamiento de bacterias con potencial biorremediador y análisis de comunidades bacterianas de zona impactada por derrame de petróleo en Condorcanqui (Amazonas, Perú). Revista De Investigaciones Altoandinas - Journal of High Andean Research, 22(3), 215-225. https://doi.org/10.18271/ria.2020.656

Resumen

El uso del petróleo y sus derivados se ha visto intensificado por la alta demanda energética actual; esto ha traído consigo el incremento de accidentes ambientales como los derrames de combustibles que afectan negativamente los ecosistemas. En estos ambientes existen microrganismos capaces de sobrevivir a dichas condiciones y utilizar los hidrocarburos de petróleo como fuente de carbono y energía; siendo propuestos en la biorremediación con un enfoque ecoamigable y costo-efectivo. En este trabajo se aislaron e identificaron cepas bacterianas con potencial biorremediador en medios de cultivo suplementados con petróleo, a partir de una zona contaminada por derrame de petróleo en la Amazonía peruana; también se realizó la caracterización de la comunidad bacteriana por análisis independiente de cultivo mediante secuenciamiento de próxima generación dirigido al gen ARNr 16S. Las cepas bacterianas aisladas se identificaron como: Acinetobacter rudis, Enterobacter cloacae, Klebsiella oxytoca, Morganella morganii, Proteus hauseri, Proteus terrae, Proteus vulgaris (2), Pseudomonas koreensis, Pseudomonas moraviensis, Pseudomonas prosekii y Serratia marcescens (2). En el análisis independiente de cultivo detectaron los filos Proteobacteria y Bacteroidetes como predominantes en agua y suelo contaminados con hidrocarburos; así mismo, la asignación taxonómica a nivel de familia destacó los grupos Flavobacteriaceae, Moraxellaceae, Verrucomicrobia y Acetobacteraceae como más abundantes, además de los géneros Acinetobacter, Flavobacterium y Geobacter presentes en ambas muestras. De esta manera, se determinaron los principales grupos implicados en la degradación de hidrocarburos haciendo uso de técnicas dependientes e independientes de cultivo.

Referencias

  1. Abbasian, F., Lockington, R., Megharaj, M., Naidu, R. (2016). The Biodiversity Changes in the Microbial Population of Soils Contaminated with Crude Oil. Current Microbiology, 72(6), 663-670. https://doi.org/10.1007/s00284-016-1001-4
  2. Aguilera, F., Méndez, J., Pásaroa, E., & Laffona, B. (2010). Review on the effects of exposure to spilled oils on human health. Journal of Applied Toxicology, 30(4), 291-301. https://doi.org/10.1002/jat.1521
  3. Al-Dhabaan, F. A. (2019). Morphological, biochemical and molecular identification of petroleum hydrocarbons biodegradation bacteria isolated from oil polluted soil in Dhahran, Saud Arabia. Saudi Journal of Biological Sciences, 26(6), 1247-1252. https://doi.org/10.1016/j.sjbs.2018.05.029
  4. Al-Majed, A. A., Adebayo, A. R., & Hossain, M. E. (2012). A sustainable approach to controlling oil spills. Journal of Environmental Management, 113, 213-227. https://doi.org/10.1016/j.jenvman.2012.07.034
  5. Alegbeleye, O. O., Opeolu, B. O., & Jackson, V. A. (2017). Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation. Environmental Management, 60(4), 758-783. https://doi.org/10.1007/s00267-017-0896-2
  6. Allamin, I., Ijah, U., Ismail, H., & Riskuwa, M. (2014). Occurrence of hydrocarbon degrading bacteria in soil in Kukawa, Borno State. International Journal of Environment, 3(2), 36-47. https://doi.org/10.3126/ije.v3i2.10503
  7. Bao, Y. J., Xu, Z., Li, Y., Yao, Z., Sun, J., & Song, H. (2017). High-throughput metagenomic analysis of petroleum-contaminated soil microbiome reveals the versatility in xenobiotic aromatics metabolism. Journal of Environmental Sciences (China), 56, 25-35. https://doi.org/10.1016/j.jes.2016.08.022
  8. Baruah, R., Mishra, S. K., Kalita, D. J., Silla, Y., Chauhan, P. S., Singh, A. K., & Deka Boruah, H. P. (2017). Assessment of bacterial diversity associated with crude oil-contaminated soil samples from Assam. International Journal of Environmental Science and Technology, 14(10), 2155-2172. https://doi.org/10.1007/s13762-017-1294-2
  9. Behesht, M., Roostaazad, R., Farhadpour, F., & Pishvaei, M. R. (2008). Model development for MEOR process in conventional non-fractured reservoirs and investigation of physico-chemical parameter effects. Chemical Engineering and Technology, 31(7), 953-963. https://doi.org/10.1002/ceat.200800094
  10. Bisht, S., Pandey, P., Bhargava, B., Sharma, S., Kumar, V., & Krishan, D. (2015). Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Brazilian Journal of Microbiology, 46(1), 7-21. https://doi.org/10.1590/S1517-838246120131354
  11. Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., … Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852-857. https://doi.org/10.1038/s41587-019-0209-9
  12. Brennerova, M. V., Josefiova, J., Brenner, V., Pieper, D. H., & Junca, H. (2009). Metagenomics reveals diversity and abundance of meta-cleavage pathways in microbial communities from soil highly contaminated with jet fuel under air-sparging bioremediation. Environmental Microbiology, 11(9), 2216-2227. https://doi.org/10.1111/j.1462-2920.2009.01943.x
  13. Chebbi, A., Hentati, D., Zaghden, H., Baccar, N., Rezgui, F., Chalbi, M., Sayadi, S., & Chamkha, M. (2017). Polycyclic aromatic hydrocarbon degradation and biosurfactant production by a newly isolated Pseudomonas sp. strain from used motor oil-contaminated soil. International Biodeterioration and Biodegradation, 122, 128-140. https://doi.org/10.1016/j.ibiod.2017.05.006
  14. Costa, A. S., Romão, L. P. C., Araújo, B. R., Lucas, S. C. O., Maciel, S. T. A., Wisniewski, A., & Alexandre, M. R. (2012). Environmental strategies to remove volatile aromatic fractions (BTEX) from petroleum industry wastewater using biomass. Bioresource Technology, 105, 31-39. https://doi.org/10.1016/j.biortech.2011.11.096
  15. Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity Daniel. Analytical Biochemistry, 61(1), 1-10. https://doi.org/Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61(1), 1–10. doi:10.1016/0006-3207(92)91201-3
  16. Garrido-Sanz, D., Redondo-Nieto, M., Guirado, M., Jiménez, O. P., Millán, R., Martin, M., & Rivilla, R. (2019). Metagenomic insights into the bacterial functions of a diesel-degrading consortium for the rhizoremediation of diesel-polluted soil. Genes, 10(6). https://doi.org/10.3390/genes10060456
  17. Gibson, D. T., & Parales, R. E. (2000). Aromatic hydrocarbon dioxygenases in environmental biotechnology. Current Opinion in Biotechnology, 11(3), 236-243. https://doi.org/10.1016/S0958-1669(00)00090-2
  18. Heberle, H., Meirelles, V. G., da Silva, F. R., Telles, G. P., & Minghim, R. (2015). InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics, 16(1), 1-7. https://doi.org/10.1186/s12859-015-0611-3
  19. Hentati, O., Lachhab, R., Ayadi, M., & Ksibi, M. (2013). Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays. Environmental Monitoring and Assessment, 185(4), 2989-2998. https://doi.org/10.1007/s10661-012-2766-y
  20. Hidalgo, K. J., Teramoto, E. H., Soriano, A. U., Valoni, E., Baessa, M. P., Richnow, H. H., Vogt, C., Chang, H. K., & Valéria, M. O. (2020). Taxonomic and functional diversity of the microbiome in a jet fuel contaminated site as revealed by combined application of in situ microcosms with metagenomic analysis. Science of the Total Environment, 708(xxxx), 135152. https://doi.org/10.1016/j.scitotenv.2019.135152
  21. Hreniuc, M., Coman, M., & Cioru, B. (2015). CONSIDERATIONS REGARDING THE SOIL POLLUTION WITH OIL PRODUCTS IN S Ă CEL - MARAMURE Ş.
  22. Khan, M. A. I., Biswas, B., Smith, E., Mahmud, S. A., Hasan, N. A., Khan, M. A. W., Naidu, R., & Megharaj, M. (2018). Microbial diversity changes with rhizosphere and hydrocarbons in contrasting soils. Ecotoxicology and Environmental Safety, 156(February), 434-442. https://doi.org/10.1016/j.ecoenv.2018.03.006
  23. Kostka, J. E., Prakash, O., Overholt, W. A., Green, S. J., Freyer, G., Canion, A., Delgardio, J., Norton, N., Hazen, T. C., & Huettel, M. (2011). Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Applied and Environmental Microbiology, 77(22), 7962-7974. https://doi.org/10.1128/AEM.05402-11
  24. Lane, D. J. (1991). 16S/23S rRNA sequencing In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematics. 115-175.
  25. Lee, D. W., Lee, H., Lee, A. H., Kwon, B. O., Khim, J. S., Yim, U. H., Kim, B. S., & Kim, J. J. (2018). Microbial community composition and PAHs removal potential of indigenous bacteria in oil contaminated sediment of Taean coast, Korea. Environmental Pollution, 234, 503-512. https://doi.org/10.1016/j.envpol.2017.11.097
  26. Liu, W., Hou, J., Wang, Q., Ding, L., & Luo, Y. (2014). Isolation and characterization of plant growth-promoting rhizobacteria and their effects on phytoremediation of petroleum-contaminated saline-alkali soil. Chemosphere, 117(1), 303-308. https://doi.org/10.1016/j.chemosphere.2014.07.026
  27. Mahjoubi, M., Jaouani, A., Guesmi, A., Ben Amor, S., Jouini, A., Cherif, H., Najjari, A., Boudabous, A., Koubaa, N., & Cherif, A. (2013). Hydrocarbonoclastic bacteria isolated from petroleum contaminated sites In Tunisia: Isolation, identification and characterization of the biotechnological potential. New Biotechnology, 30(6), 723-733. https://doi.org/10.1016/j.nbt.2013.03.004
  28. Mishra, A. K., & Kumar, G. S. (2015). Weathering of Oil Spill: Modeling and Analysis. Aquatic Procedia, 4(March), 435-442. https://doi.org/10.1016/j.aqpro.2015.02.058
  29. Moubasher, H. A., Hegazy, A. K. ., Mohamed, N. H. ., Moustafa, Y. M. ., Kabiel, H. F. ., & Hamad, A. A. (2015). Phytoremediation of soils polluted with crude petroleum oil using Bassia scoparia and its associated rhizosphere microorganisms. International Biodeterioration and Biodegradation, 98, 113-120. https://doi.org/10.1016/j.ibiod.2014.11.019
  30. Nalini, S., & Parthasarathi, R. (2013). Biosurfactant production by Serratia rubidaea SNAU02 isolated from hydrocarbon contaminated soil and its physico-chemical characterization. Bioresource Technology, 147, 619-622. https://doi.org/10.1016/j.biortech.2013.08.041
  31. Ossai, I. C., Ahmed, A., Hassan, A., & Hamid, F. S. (2020). Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environmental Technology and Innovation, 17. https://doi.org/10.1016/j.eti.2019.100526
  32. Pacwa-Płociniczak, M., Płociniczak, T., Iwan, J., Zarska, M., Chorazewski, M., Dzida, M., & Piotrowska-Seget, Z. (2016). Isolation of hydrocarbon-degrading and biosurfactant-producing bacteria and assessment their plant growth-promoting traits. Journal of Environmental Management, 168, 175-184. https://doi.org/10.1016/j.jenvman.2015.11.058
  33. Prabhu, Y., & Phale, P. S. (2003). Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: Novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Applied Microbiology and Biotechnology, 61(4), 342-351. https://doi.org/10.1007/s00253-002-1218-y
  34. Sammarco, P. W., Kolian, S. R., Warby, R. A. F., Bouldin, J. L., Subra, W. A., & Porter, S. A. (2016). Concentrations in human blood of petroleum hydrocarbons associated with the BP/Deepwater Horizon oil spill, Gulf of Mexico. Archives of Toxicology, 90(4), 829-837. https://doi.org/10.1007/s00204-015-1526-5
  35. Sarkar, P., Roy, A., Pal, S., Mohapatra, B., Kazy, S. K., Maiti, M. K., & Sar, P. (2017). Enrichment and characterization of hydrocarbon-degrading bacteria from petroleum refinery waste as potent bioaugmentation agent for in situ bioremediation. Bioresource Technology, 242, 15-27. https://doi.org/10.1016/j.biortech.2017.05.010
  36. Smułek, W., Sydow, M., Zabielska-Matejuk, J., & Kaczorek, E. (2020). Bacteria involved in biodegradation of creosote PAH – A case study of long-term contaminated industrial area. Ecotoxicology and Environmental Safety, 187(October 2019). https://doi.org/10.1016/j.ecoenv.2019.109843
  37. Subramanian, A., & Menon, S. (2015). Novel Polyaromatic Hydrocarbon (PAH) degraders from oil contaminated soil samples. International Journal of Advanced Research, 3(August), 999-1006.
  38. Sutton, N. B., Maphosa, F., Morillo, J. A., Al-Soud, W. A., Langenhoff, A. A. M., Grotenhuis, T., Rijnaarts, H. H. M., & Smidt, H. (2013). Impact of long-term diesel contamination on soil microbial community structure. Applied and Environmental Microbiology, 79(2), 619-630. https://doi.org/10.1128/AEM.02747-12
  39. Swift, M. J., Atlas, R. M., & Bartha, R. (1982). Journal of Ecology,. The Journal of Ecology, 70(2), 686-687. doi:10.2307/2259932
  40. Tuo, B. H., Yan, J. B., Fan, B. A., Yang, Z. H., & Liu, J. Z. (2012). Biodegradation characteristics and bioaugmentation potential of a novel quinoline-degrading strain of Bacillus sp. isolated from petroleum-contaminated soil. Bioresource Technology, 107, 55-60. https://doi.org/10.1016/j.biortech.2011.12.114
  41. Van Stempvoort, D., & Biggar, K. (2008). Potential for bioremediation of petroleum hydrocarbons in groundwater under cold climate conditions: A review. Cold Regions Science and Technology, 53(1), 16-41. https://doi.org/10.1016/j.coldregions.2007.06.009
  42. Varjani, S. J., & Upasani, V. N. (2017). A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. International Biodeterioration and Biodegradation, 120, 71-83. https://doi.org/10.1016/j.ibiod.2017.02.006
  43. Zhu, F., Doyle, E., Zhu, C., Zhou, D., Gu, C., & Gao, J. (2020). Metagenomic analysis exploring microbial assemblages and functional genes potentially involved in di (2-ethylhexyl) phthalate degradation in soil. Science of the Total Environment, 715, 137037. https://doi.org/10.1016/j.scitotenv.2020.137037.