Vol. 26 Núm. 1 (2024)
Artículo de revisión

Contaminación y pérdida de biodiversidad por actividades mineras y agropecuarias: estado del arte

Oscar Junior Paredes-Vilca
Universidad Nacional Agraria La Molina, Doctorado en Economía de los Recursos Naturales y el Desarrollo Sustentable, Av. La Molina SN, La Molina, Lima, Perú
José Dávila García
ESAN Graduate School of Business. Lima, Perú
Jorge Apaza Cruz
Ingeniería electrónica, Universidad Nacional del Altiplano, Puno, Perú

Publicado 2024-01-31

Palabras clave

  • Biodiversidad, contaminación, agricultura, ganadería y minería

Cómo citar

Paredes-Vilca, O. J., Jiménez Diaz, L., Dávila García, J., & Apaza Cruz, J. (2024). Contaminación y pérdida de biodiversidad por actividades mineras y agropecuarias: estado del arte. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 26(1), 56-66. https://doi.org/10.18271/ria.2024.594

Resumen

Los servicios que brindan la biodiversidad y los ecosistemas son puestos en peligro por las diversas actividades que realiza el hombre. Entre ellas, la minería y las actividades agrícolas han contribuido con la pérdida de biodiversidad y deterioro de los ecosistemas, empero los daños generados por la minería son opacados por los beneficios económicos que trae consigo. Así, el objetivo de este estudio fue compilar literatura científica, que ayude a determinar la forma en que estas actividades perjudican a la biodiversidad y a los ecosistemas, así como los efectos negativos que desencadenan entre ellas. Para ello, se recurrió a artículos originales y de revisión de las bases de datos Web of science, Scopus y Scielo. Los hallazgos evidencian que existe contaminación con metales pesados, producto de la minería y el uso de agroquímicos por parte de la actividad agropecuaria. No obstante, existen externalidades negativas generadas de forma unidireccional, estando la producción agropecuaria supeditada al perjuicio provocado por la minería.

Referencias

  1. Abad-Valle, P., Álvarez-Ayuso, E., Murciego, A., Muñoz-Centeno, L. M., Alonso-Rojo, P., & Villar-Alonso, P. (2018). Arsenic distribution in a pasture area impacted by past mining activities. Ecotoxicology and Environmental Safety, 147, 228–237. https://doi.org/10.1016/j.ecoenv.2017.08.031
  2. Anetor, G. O., Nwobi, N. L., Igharo, G. O., Sonuga, O. O., & Anetor, J. I. (2022). Environmental Pollutants and Oxidative Stress in Terrestrial and Aquatic Organisms: Examination of the Total Picture and Implications for Human Health. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.931386
  3. Betancur-Corredor, B., Loaiza-Usuga, J. C., Denich, M., & Borgemeister, C. (2018a). Gold mining as a potential driver of development in Colombia: Challenges and opportunities. Journal of Cleaner Production, 199, 538–553. https://doi.org/10.1016/j.jclepro.2018.07.142
  4. Betancur-Corredor, B., Loaiza-Usuga, J. C., Denich, M., & Borgemeister, C. (2018b). Gold mining as a potential driver of development in Colombia: Challenges and opportunities. Journal of Cleaner Production, 199, 538–553. https://doi.org/10.1016/j.jclepro.2018.07.142
  5. Bocanegra Acosta, H., & Carvajal Martínez, J. E. (2019). EXTRACTIVISMO, DERECHO Y CONFLICTO SOCIAL EN COLOMBIA. Revista Republicana, 26, 143–169. https://doi.org/10.21017/Rev.Repub.2019.v26.a63
  6. Bolan, S., Wijesekara, H., Amarasiri, D., Zhang, T., Ragályi, P., Brdar-Jokanović, M., Rékási, M., Lin, J.-Y., Padhye, L. P., Zhao, H., Wang, L., Rinklebe, J., Wang, H., Siddique, K. H. M., Kirkham, M. B., & Bolan, N. (2023). Boron contamination and its risk management in terrestrial and aquatic environmental settings. Science of The Total Environment, 894, 164744. https://doi.org/10.1016/j.scitotenv.2023.164744
  7. Brühl, C. A., Arias Andres, M., Echeverría-Sáenz, S., Bundschuh, M., Knäbel, A., Mena, F., Petschick, L. L., Ruepert, C., & Stehle, S. (2023). Pesticide use in banana plantations in Costa Rica – A review of environmental and human exposure, effects and potential risks. Environment International, 174, 107877. https://doi.org/10.1016/j.envint.2023.107877
  8. Burland, A., & von Cossel, M. (2023). Towards Managing Biodiversity of European Marginal Agricultural Land for Biodiversity-Friendly Biomass Production. Agronomy, 13(6), 1651. https://doi.org/10.3390/agronomy13061651
  9. Centanni, M., Ricci, G. F., De Girolamo, A. M., Romano, G., & Gentile, F. (2023). A review of modeling pesticides in freshwaters: Current status, progress achieved and desirable improvements. Environmental Pollution, 316, 120553. https://doi.org/10.1016/j.envpol.2022.120553
  10. Chen, M., Cai, Q., Nie, J., & Zeng, Q. (2015). Adsorption Characteristics of Lead (Pb2+) and Cadmium (Cd2+) by an Isolated Bacterium from Soil Samples Obtained from a Tungsten Mine. Nature Environment and Pollution Technology An International Quarterly Scientific Journal, 14(3), 525–532.
  11. Chen, M., Li, F., Tao, M., Hu, L., Shi, Y., & Liu, Y. (2019). Distribution and ecological risks of heavy metals in river sediments and overlying water in typical mining areas of China. Marine Pollution Bulletin, 146, 893–899. https://doi.org/10.1016/j.marpolbul.2019.07.029
  12. Chirinos-Peinado, D. M., & Castro-Bedriñana, J. I. (2020). Lead and cadmium blood levels and transfer to milk in cattle reared in a mining area. Heliyon, 6(3), e03579. https://doi.org/10.1016/j.heliyon.2020.e03579
  13. Cofie, O., & Amede, T. (2015). Water management for sustainable agricultural intensification and smallholder resilience in sub-Saharan Africa. Water Resources and Rural Development, 6, 3–11.
  14. Dasgupta, P., & Levin, S. (2023). Economic factors underlying biodiversity loss. Philosophical Transactions of the Royal Society B: Biological Sciences, 378(1881). https://doi.org/10.1098/rstb.2022.0197
  15. De La Cruz, L. P., & Pérez, N. D. S. (2020). El saber escolar en biodiversidad en clave para resignificar su enseñanza. Praxis & Saber, 11(27), e11167. https://doi.org/10.19053/22160159.v12.n28.2021.11167
  16. Devenin, V., & Bianchi, C. (2019). Characterizing a mining space: Analysis from case studies in Chile and Australia. Resources Policy, 63, 101402. https://doi.org/10.1016/j.resourpol.2019.101402
  17. Díaz, S., & Malhi, Y. (2022). Biodiversity: Concepts, Patterns, Trends, and Perspectives. Annual Review of Environment and Resources, 47(1), 31–63. https://doi.org/10.1146/annurev-environ-120120-054300
  18. Dong, L., Tong, X., Li, X., Zhou, J., Wang, S., & Liu, B. (2019). Some developments and new insights of environmental problems and deep mining strategy for cleaner production in mines. Journal of Cleaner Production, 210, 1562–1578. https://doi.org/10.1016/j.jclepro.2018.10.291
  19. Dutilly, C., Alary, V., Bonnet, P., Lesnoff, M., Fandamu, P., & de Haan, C. (2020). Multi-scale assessment of the livestock sector for policy design in Zambia. Journal of Policy Modeling, 42(2), 401–418. https://doi.org/10.1016/j.jpolmod.2019.07.004
  20. Etteieb, S., Magdouli, S., Zolfaghari, M., & Brar, S. (2020). Monitoring and analysis of selenium as an emerging contaminant in mining industry: A critical review. Science of The Total Environment, 698, 134339. https://doi.org/10.1016/j.scitotenv.2019.134339
  21. Feckler, A., Wolfram, J., Schulz, R., & Bundschuh, M. (2023). Reducing pollution to levels not harming biodiversity and ecosystem functions: A perspective on the post-2020 Global Biodiversity Framework. Current Opinion in Environmental Science & Health, 35, 100495. https://doi.org/10.1016/j.coesh.2023.100495
  22. Furlow, B. (2014a). Mining pollution: a legacy of contamination. The Lancet Oncology, 15(6), 558. https://doi.org/10.1016/S1470-2045(14)70157-3
  23. Furlow, B. (2014b). Mining pollution: a legacy of contamination. The Lancet Oncology, 15(6), 558. https://doi.org/10.1016/S1470-2045(14)70157-3
  24. García, M. G., Sánchez, J. I. L., Bravo, K. A. S., Cabal, M. D. C., & Pérez-Santín, E. (2022). Review: Presence, distribution and current pesticides used in Spanish agricultural practices. Science of The Total Environment, 845, 157291. https://doi.org/10.1016/j.scitotenv.2022.157291
  25. Garzon-Vidueira, R., Rial-Otero, R., Garcia-Nocelo, M. L., Rivas-Gonzalez, E., Moure-Gonzalez, D., Fompedriña-Roca, D., Vadillo-Santos, I., & Simal-Gandara, J. (2020). Identification of nitrates origin in Limia river basin and pollution-determinant factors. Agriculture, Ecosystems & Environment, 290, 106775. https://doi.org/10.1016/j.agee.2019.106775
  26. Gilardino, A., Quispe, I., Pacheco, M., & Bartl, K. (2020). Comparison of different methods for consideration of multifunctionality of Peruvian dairy cattle in Life Cycle Assessment. Livestock Science, 240, 104151. https://doi.org/10.1016/j.livsci.2020.104151
  27. Giraldo Maca, U. F. (2017). MINERÍA INFORMAL EN LA CUENCA ALTA DEL RAMIS IMPACTOS EN EL PAISAJE Y EVOLUCIÓN DEL CONFLICTO SOCIO AMBIENTAL. PONTIFICA UNIVERSIDAD CATÓLICA DEL PERU.
  28. González, N., Marquès, M., Nadal, M., & Domingo, J. L. (2020). Meat consumption: Which are the current global risks? A review of recent (2010–2020) evidences. Food Research International, 137, 109341. https://doi.org/10.1016/j.foodres.2020.109341
  29. He, B., He, J., Wang, L., Zhang, X., & Bi, E. (2019). Effect of hydrogeological conditions and surface loads on shallow groundwater nitrate pollution in the Shaying River Basin: Based on least squares surface fitting model. Water Research, 163, 114880. https://doi.org/10.1016/j.watres.2019.114880
  30. Hoffmann, I. (2011). Livestock biodiversity and sustainability. Livestock Science, 139(1–2), 69–79.
  31. Hughes, R. M., & Vadas, R. L. (2021). Agricultural Effects on Streams and Rivers: A Western USA Focus. Water, 13(14), 1901. https://doi.org/10.3390/w13141901
  32. Hunault-Fontbonne, J., & Eyvindson, K. (2023). Bridging the gap between forest planning and ecology in biodiversity forecasts: A review. Ecological Indicators, 154, 110620. https://doi.org/10.1016/j.ecolind.2023.110620
  33. Kazemi, H., Klug, H., & Kamkar, B. (2018a). New services and roles of biodiversity in modern agroecosystems: A review. Ecological Indicators, 93, 1126–1135. https://doi.org/10.1016/j.ecolind.2018.06.018
  34. Kazemi, H., Klug, H., & Kamkar, B. (2018b). New services and roles of biodiversity in modern agroecosystems: A review. Ecological Indicators, 93, 1126–1135. https://doi.org/10.1016/j.ecolind.2018.06.018
  35. Kumar, D., De, K., Kumar, A., Kumar, K., Sahoo, A., Mohammad, S., & Naqvi, K. (2016). Effect of water restriction on physiological responses and certain reproductive traits of Malpura ewes in a semiarid tropical environment. Journal of Veterinary Behavior, 12, 54–59.
  36. Lamare, R. E., & Singh, O. P. (2014). Degradation in Water Quality due to Limestone Mining in East Jaintia Hills, Meghalaya, India. International Research Journal of Environment Sciences, 3, 13–20.
  37. Lamare, R. E., & Singh, O. P. (2017). Changes in Soil Quality in Limestone Mining Area of Meghalaya, India. Nature Environment and Pollution Technology, 16(2), 545–550.
  38. Leon Mendoza, J. C. (2019). DETERMINANTES ECONÓMICOS Y SOCIOPOLÍTICOS DE LOS CONFLICTOS SOCIOAMBIENTALES EN EL PERU. Revista de Investigaciones Altoandinas - Journal of High Andean Research, 21(2), 122–138.
  39. L. Resque, A., Coudel, E., Piketty, M.-G., Cialdella, N., Sá, T., Piraux, M., Assis, W., & Le Page, C. (2019). Agrobiodiversity and Public Food Procurement Programs in Brazil: Influence of Local Stakeholders in Configuring Green Mediated Markets. Sustainability, 11(5), 1425.
  40. Machate, O., Schmeller, D. S., Schulze, T., & Brack, W. (2023). Review: mountain lakes as freshwater resources at risk from chemical pollution. Environmental Sciences Europe, 35(1), 3. https://doi.org/10.1186/s12302-022-00710-3
  41. María Rocío Pérez-Mesa. (2019). Concepciones de biodiversidad y prácticas de cuidado de la vida desde una perspectiva cultural. Tecné, Episteme y Didaxis:TED, 45(I), 17–34.
  42. Marrugo-Negrete, J., Pinedo-Hernández, J., & Díez, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental Research, 154, 380–388. https://doi.org/10.1016/j.envres.2017.01.021
  43. Muñoz-Duque, L. A., Pérez Osorno, M. M., & Betancur Vargas, A. (2020). Despojo, conflictos socioambientales y violación de derechos humanos. Implicaciones de la gran minería en América Latina. Revista U.D.C.A Actualidad & Divulgación Científica, 23(1). https://doi.org/10.31910/rudca.v23.n1.2020.988
  44. Murali, R., Ikhagvajav, P., Amankul, V., Jumabay, K., Sharma, K., Bhatnagar, Y. V., Suryawanshi, K., & Mishra, C. (2020). Ecosystem service dependence in livestock and crop-based production systems in Asia’s high mountains. Journal of Arid Environments, 180, 104204. https://doi.org/10.1016/j.jaridenv.2020.104204
  45. Nakata, H., Nakayama, S. M. M., Yabe, J., Muzandu, K., Kataba, A., Ikeda-Araki, A., Drisse, M.-N. B., Onyon, L. J., Gorman, J., Kritika, P., Fukunaga, H., Ikenaka, Y., Kishi, R., & Ishizuka, M. (2022). Narrative review of lead poisoning in humans caused by industrial activities and measures compatible with sustainable industrial activities in Republic of Zambia. Science of The Total Environment, 850, 157833. https://doi.org/10.1016/j.scitotenv.2022.157833
  46. Nawrocka, A., Durkalec, M., Szkoda, J., Filipek, A., Kmiecik, M., Żmudzki, J., & Posyniak, A. (2020). Total mercury levels in the muscle and liver of livestock and game animals in Poland, 2009–2018. Chemosphere, 258, 127311. https://doi.org/10.1016/j.chemosphere.2020.127311
  47. Ofosu, G., Dittmann, A., Sarpong, D., & Botchie, D. (2020). Socio-economic and environmental implications of Artisanal and Small-scale Mining (ASM) on agriculture and livelihoods. Environmental Science & Policy, 106, 210–220. https://doi.org/10.1016/j.envsci.2020.02.005
  48. Okereafor, U., Makhatha, M., Mekuto, L., Uche-Okereafor, N., Sebola, T., & Mavumengwana, V. (2020). Toxic Metal Implications on Agricultural Soils, Plants, Animals, Aquatic life and Human Health. International Journal of Environmental Research and Public Health, 17(7), 2204. https://doi.org/10.3390/ijerph17072204
  49. Paredes Mamani, R. P., & Escobar-Mamani, F. (2018). El rol de la ganadería y la pobreza en el área rural de Puno. Revista de Investigaciones Altoandinas - Journal of High Andean Research, 20(1), 39–60.
  50. Pareja-Carrera, J., Mateo, R., & Rodríguez-Estival, J. (2014). Lead (Pb) in sheep exposed to mining pollution: Implications for animal and human health. Ecotoxicology and Environmental Safety, 108, 210–216. https://doi.org/10.1016/j.ecoenv.2014.07.014
  51. Parkin, M. (2016). Microeconomics (12th ed.). PEARSON EDUCACION DE MEXICO S.A. DE C.V.
  52. Peera Sheikh Kulsum, P. G., Khanam, R., Das, S., Nayak, A. K., Tack, F. M. G., Meers, E., Vithanage, M., Shahid, M., Kumar, A., Chakraborty, S., Bhattacharya, T., & Biswas, J. K. (2023). A state-of-the-art review on cadmium uptake, toxicity, and tolerance in rice: From physiological response to remediation process. Environmental Research, 220, 115098. https://doi.org/10.1016/j.envres.2022.115098
  53. Pérez Cebada, J. D. (2016). Mining corporations and air pollution science before the Age of Ecology. Ecological Economics, 123, 77–83. https://doi.org/10.1016/j.ecolecon.2015.12.001
  54. Pindyck, R., & Rubinfeld, D. (2018). Microeconomía (9th ed.). PEARSON EDUCACION DE MEXICO S.A. DE C.V.
  55. Qian, D., Yan, C., Xiu, L., & Feng, K. (2018). The impact of mining changes on surrounding lands and ecosystem service value in the Southern Slope of Qilian Mountains. Ecological Complexity, 36, 138–148. https://doi.org/10.1016/j.ecocom.2018.08.002
  56. Rad, S. M., Ray, A. K., & Barghi, S. (2022). Water Pollution and Agriculture Pesticide. Clean Technologies, 4(4), 1088–1102. https://doi.org/10.3390/cleantechnol4040066
  57. Rajaee, M., Obiri, S., Green, A., Long, R., Cobbina, S., Nartey, V., Buck, D., Antwi, E., & Basu, N. (2015). Integrated Assessment of Artisanal and Small-Scale Gold Mining in Ghana—Part 2: Natural Sciences Review. International Journal of Environmental Research and Public Health, 12(8), 8971–9011. https://doi.org/10.3390/ijerph120808971
  58. Rajan, S., Parween, M., & Raju, N. J. (2023). Pesticides in the hydrogeo-environment: a review of contaminant prevalence, source and mobilisation in India. Environmental Geochemistry and Health, 45(8), 5481–5513. https://doi.org/10.1007/s10653-023-01608-6
  59. Reyes-Palomino, S. E., & Cano Ccoa, D. M. (2022). Efectos de la agricultura intensiva y el cambio climático sobre la biodiversidad. Revista de Investigaciones Altoandinas - Journal of High Andean Research, 24(1), 53–64. https://doi.org/10.18271/ria.2022.328
  60. Rodríguez-Estival, J., Morales-Machuca, C., Pareja-Carrera, J., Ortiz-Santaliestra, M. E., & Mateo, R. (2019). Food safety risk assessment of metal pollution in crayfish from two historical mining areas: Accounting for bioavailability and cooking extractability. Ecotoxicology and Environmental Safety, 185, 109682. https://doi.org/10.1016/j.ecoenv.2019.109682
  61. Rojas-Downing, M., Nejadhashemi, P., Harrigan, T., & Woznicki, S. (2017). Climate change and livestock: Impacts, adaptation, and mitigation. Climate Risk Management, 16, 145–163.
  62. Shackleton, R. T. (2020). Loss of land and livelihoods from mining operations: A case in the Limpopo Province, South Africa. Land Use Policy, 99, 104825. https://doi.org/10.1016/j.landusepol.2020.104825
  63. Sharma, A., Kundu, S., Tariq, H., Kewalramani, K., & Yadav, R. (2017). Impact of total dissolved solids in drinking water on nutrient utilisation and growth performance of Murrah buffalo calves. Livestock Science, 198, 17–23.
  64. Soe, P. S., Kyaw, W. T., Arizono, K., Ishibashi, Y., & Agusa, T. (2022). Mercury Pollution from Artisanal and Small-Scale Gold Mining in Myanmar and Other Southeast Asian Countries. International Journal of Environmental Research and Public Health, 19(10), 6290. https://doi.org/10.3390/ijerph19106290
  65. Søndergaard, J., & Mosbech, A. (2022). Mining pollution in Greenland - the lesson learned: A review of 50 years of environmental studies and monitoring. Science of The Total Environment, 812, 152373. https://doi.org/10.1016/j.scitotenv.2021.152373
  66. Straalen Van, F., Witte, P., & Buitelaar, E. (2017). Self‐Organisation in Oosterwold, Almere: Challenges with Public Goods and Externalities. Journal of Economic and Social Geography, 108(4), 503–511.
  67. Tankari Dan-Badjo, A., Ibrahim, O. Z., Guéro, Y., Morel, J. L., Feidt, C., & Echevarria, G. (2019). Impacts of artisanal gold mining on soil, water and plant contamination by trace elements at Komabangou, Western Niger. Journal of Geochemical Exploration, 205, 106328. https://doi.org/10.1016/j.gexplo.2019.06.010
  68. Timmermann, C., & Robaey, Z. (2016). Agrobiodiversity Under Different Property Regimes. Journal of Agricultural and Environmental Ethics, 29(2), 285–303. https://doi.org/10.1007/s10806-016-9602-2
  69. Ukaogo, P. O., Ewuzie, U., & Onwuka, C. V. (2020). Environmental pollution: causes, effects, and the remedies. In Microorganisms for Sustainable Environment and Health (pp. 419–429). Elsevier. https://doi.org/10.1016/B978-0-12-819001-2.00021-8
  70. Uugwanga, M. N., & Kgabi, N. A. (2020a). Assessment of metals pollution in sediments and tailings of Klein Aub and Oamites mine sites, Namibia. Environmental Advances, 2, 100006. https://doi.org/10.1016/j.envadv.2020.100006
  71. Uugwanga, M. N., & Kgabi, N. A. (2020b). Assessment of metals pollution in sediments and tailings of Klein Aub and Oamites mine sites, Namibia. Environmental Advances, 2, 100006. https://doi.org/10.1016/j.envadv.2020.100006
  72. Valdés Durán, A., Aliaga, G., Deckart, K., Karas, C., Cáceres, D., & Nario, A. (2022). The environmental geochemical baseline, background and sources of metal and metalloids present in urban, peri-urban and rural soils in the O´Higgins region, Chile. Environmental Geochemistry and Health, 44(10), 3173–3189. https://doi.org/10.1007/s10653-021-01098-4
  73. Wegenast, T., & Beck, J. (2020). Mining, rural livelihoods and food security: A disaggregated analysis of sub-Saharan Africa. World Development, 130, 104921. https://doi.org/10.1016/j.worlddev.2020.104921
  74. Wu, W., Qu, S., Nel, W., & Ji, J. (2020). The impact of natural weathering and mining on heavy metal accumulation in the karst areas of the Pearl River Basin, China. Science of The Total Environment, 734, 139480. https://doi.org/10.1016/j.scitotenv.2020.139480
  75. Young, T. P., Porensky, L. M., Riginos, C., Veblen, K. E., Odadi, W. O., Kimuyu, D. M., Charles, G. K., & Young, H. S. (2018). Relationships Between Cattle and Biodiversity in Multiuse Landscape Revealed by Kenya Long-Term Exclosure Experiment. Rangeland Ecology & Management, 71(3), 281–291.
  76. Zhao, S., Shi, T., Terada, A., & Riya, S. (2022). Evaluation of Pollution Level, Spatial Distribution, and Ecological Effects of Antimony in Soils of Mining Areas: A Review. International Journal of Environmental Research and Public Health, 20(1), 242. https://doi.org/10.3390/ijerph20010242
  77. Zimmerer, K. S., de Haan, S., Jones, A. D., Creed-Kanashiro, H., Tello, M., Carrasco, M., Meza, K., Plasencia Amaya, F., Cruz-Garcia, G. S., Tubbeh, R., & Jiménez Olivencia, Y. (2019). The biodiversity of food and agriculture (Agrobiodiversity) in the anthropocene: Research advances and conceptual framework. Anthropocene, 25, 100192. https://doi.org/10.1016/j.ancene.2019.100192
  78. Zimmerer, K., & Vanek, S. (2016). Toward the Integrated Framework Analysis of Linkages among Agrobiodiversity, Livelihood Diversification, Ecological Systems, and Sustainability amid Global Change. Land, 5(2), 10. https://doi.org/10.3390/land5020010