Vol. 24 Núm. 1 (2022)
Artículo de revisión

Efectos de la agricultura intensiva y el cambio climático sobre la biodiversidad

Smith Ervin Reyes Palomino
Universidad Continental
Dominga Micaela Cano Ccoa
Escuela Profesional Gestión Pública y Desarrollo Social, Universidad Nacional de Juliaca,

Publicado 2022-02-21

Palabras clave

  • Cambio climático,
  • agricultura,
  • biodiversidad,
  • América,
  • Humanidad,
  • Tecnología,
  • ganadería intensiva
  • ...Más
    Menos

Cómo citar

Reyes Palomino, S. E., & Cano Ccoa , D. M. . (2022). Efectos de la agricultura intensiva y el cambio climático sobre la biodiversidad. Revista De Investigaciones Altoandinas, 24(1), 53–64. https://doi.org/10.18271/ria.2022.328

Resumen

La biodiversidad está siendo afectada por la sobreexplotación de recursos naturales, el incremento de especies invasoras, el cambio climático, agricultura y la ganadería intensiva. Entre ellos, el cultivo intensivo de soya ha desplazado a los otros productos como el arroz y el trigo; el cultivo intensivo, induce al mayor uso de agroquímicos que genera severos efectos socio ambientales, en particular sobre la biodiversidad. El objetivo del estudio fue compilar literatura científica producida sobre la pérdida de biodiversidad causada por la agricultura intensiva y el cambio climático, y dentro de ellas los posibles efectos en la interrelación entre el ser humano y el medio ambiente. El procedimiento metodológico fue la revisión sistemática desarrollado en marzo de 2021, usando operadores booleanos AND, OR, NOT con términos “biodiversity”, “climate change” y “agriculture” en las bases de datos Scopus, Web of Science y Scielo. Los resultados identifican que al menos existían en Web of science (99 temas), Scopus (155 temas) y Scielo (36 temas) que evidencian la pérdida de biodiversidad por efecto del cambio climático y la expansión de la agricultura intensiva con consecuencias, no solo en las regiones del entorno de los cultivos referidos, sino que, éstas indirectamente se trasladan hacia las regiones de montaña mediando consumo de soya en animales y derivados en humanos. Se concluye que la biodiversidad como proveedora de alimentos y de prevenir enfermedades para la humanidad contribuye a la sustentabilidad y, por tanto, su preservación requiere de adopción de políticas públicas agresivas dentro del marco del Convenio sobre la Diversidad Biológica.

Citas

  1. Acero Triana, J. S., Chu, M. L., & Stein, J. A. (2021). Assessing the impacts of agricultural conservation practices on freshwater biodiversity under changing climate. Ecological Modelling, 453, 109604. https://doi.org/10.1016/J.ECOLMODEL.2021.109604
  2. Aggarwal, P., Vyas, S., Thornton, P., Campbell, B. M., & Kropff, M. (2019). Importance of considering technology growth in impact assessments of climate change on agriculture. Global Food Security, 23, 41–48. https://doi.org/10.1016/J.GFS.2019.04.002
  3. Akakpo, K., Bouarfa, S., Benoît, M., & Leauthaud, C. (2021). Challenging agroecology through the characterization of farming practices’ diversity in Mediterranean irrigated areas. European Journal of Agronomy, 128(March). https://doi.org/10.1016/j.eja.2021.126284
  4. Alaback, P. B. (1996). Biodiversity Patterns in Relation to Climate: The Coastal Temperate Rainforests of North America. 105–133. https://doi.org/10.1007/978-1-4612-3970-3_7
  5. Allstädt, F. J., Koutsodendris, A., Appel, E., Rösler, W., Reichgelt, T., Kaboth-Bahr, S., Prokopenko, A. A., & Pross, J. (2021). Late Pliocene to early Pleistocene climate dynamics in western North America based on a new pollen record from paleo-Lake Idaho. Palaeobiodiversity and Palaeoenvironments, 101(1), 177–195. https://doi.org/10.1007/s12549-020-00460-1
  6. Altieri, M. A. (2000). APPLYING AGROECOLOGY TO ENHANCE THE PRODUCTIVITY OF PEASANT FARMING SYSTEMS IN LATIN AMERICA. Environment, Development and Sustainability Volume, 1, 197–217.
  7. Bionda, C., Gari, N., Luque, E., Salas, N., Lajmanovich, R., & Martino, A. (2012). Ecología trófica en larvas de Rhinella arenarum (Anura: Bufonidae) en agroecosistemas y sus posibles implicaciones para la conservación. Revista de Biologia Tropical, 60(2), 771–779. https://doi.org/10.15517/rbt.v60i2.3998
  8. Campos, E. V. R., de Oliveira, J. L., Fraceto, L. F., & Singh, B. (2015). Polysaccharides as safer release systems for agrochemicals. Agronomy for Sustainable Development, 35(1), 47–66. https://doi.org/10.1007/s13593-014-0263-0
  9. Correa, D. F., Beyer, H. L., Possingham, H. P., Fargione, J. E., Hill, J. D., & Schenk, P. M. (2021). Microalgal biofuel production at national scales: Reducing conflicts with agricultural lands and biodiversity within countries. Energy, 215, 119033. https://doi.org/10.1016/J.ENERGY.2020.119033
  10. da Silveira, F., Ruppenthal, J. E., Lermen, F. H., Machado, F. M., & Amaral, F. G. (2021). Technologies used in agricultural machinery engines that contribute to the reduction of atmospheric emissions: A patent analysis in Brazil. World Patent Information, 64, 102–123. https://doi.org/10.1016/J.WPI.2021.102023
  11. Dale, V. H., Kline, K. L., Lopez-Ridaura, S., Eichler, S. E., Ortiz-Monasterio, I., & Ramirez, L. F. (2020). Towards more sustainable agricultural landscapes: Lessons from Northwestern Mexico and the Western Highlands of Guatemala. Futures, 124, 102647. https://doi.org/10.1016/J.FUTURES.2020.102647
  12. de Mello Brandão Vinholis, M., Macchione Saes, M. S., Carrer, M. J., & Meirelles de Souza Filho, H. (2021). The effect of meso-institutions on adoption of sustainable agricultural technology: A case study of the Brazilian Low Carbon Agriculture Plan. Journal of Cleaner Production, 280, 124334. https://doi.org/10.1016/J.JCLEPRO.2020.124334
  13. Delanka-Pedige, H. M. K., Cheng, X., Munasinghe-Arachchige, S. P., Bandara, G. L. C. L., Zhang, Y., Xu, P., Schaub, T., & Nirmalakhandan, N. (2020). Conventional vs. algal wastewater technologies: Reclamation of microbially safe water for agricultural reuse. Algal Research, 51, 102022. https://doi.org/10.1016/J.ALGAL.2020.102022
  14. Elahi, E., Weijun, C., Zhang, H., & Nazeer, M. (2019). Agricultural intensification and damages to human health in relation to agrochemicals: Application of artificial intelligence. Land Use Policy, 83, 461–474. https://doi.org/10.1016/J.LANDUSEPOL.2019.02.023
  15. Escobar-Mamani, F., Branca, D., & Haller, A. (2020). Investigación de montaña sobre y para la región andina. Revista de Investigaciones Altoandinas - Journal of High Andean Research, 22(4), 311–312. https://doi.org/10.18271/ria.2020.191
  16. Esperon-Rodriguez, M., Beaumont, L. J., Lenoir, J., Baumgartner, J. B., McGowan, J., Correa-Metrio, A., & Camac, J. S. (2019). Climate change threatens the most biodiverse regions of Mexico. Biological Conservation, 240, 108–215. https://doi.org/10.1016/J.BIOCON.2019.108215
  17. Fielke, S., Taylor, B., & Jakku, E. (2020). Digitalisation of agricultural knowledge and advice networks: A state-of-the-art review. Agricultural Systems, 180, 102763. https://doi.org/10.1016/J.AGSY.2019.102763
  18. Freedman, B., & Beauchamp, S. (1998). Implications of atmospheric change for biodiversity of aquatic ecosystems in Canada. Environmental Monitoring and Assessment, 49(2–3), 271–280. https://doi.org/10.1023/A:1005851027038
  19. Galatowitsch, S., Frelich, L., & Phillips-Mao, L. (2009). Regional climate change adaptation strategies for biodiversity conservation in a midcontinental region of North America. Biological Conservation, 142(10), 2012–2022. https://doi.org/10.1016/J.BIOCON.2009.03.030
  20. Gautam, R. K., Goswami, M., Mishra, R. K., Chaturvedi, P., Awashthi, M. K., Singh, R. S., Giri, B. S., & Pandey, A. (2021). Biochar for remediation of agrochemicals and synthetic organic dyes from environmental samples: A review. Chemosphere, 272, 129917. https://doi.org/10.1016/J.CHEMOSPHERE.2021.129917
  21. Glick, B. R., Pasternak, J. J., Downer, R. G. H., Dumbroff, E. B., & Winter, K. A. (1991). Development and enhancement of agricultural biotechnology in some countries in Latin America. World Journal of Microbiology & Biotechnology, 7(2), 164–170. https://doi.org/10.1007/BF00328986
  22. Goris, M. B., Silva Lopes, I., Verschoor, G., Behagel, J., & Botelho, M. I. V. (2021). Popular education, youth and peasant agroecology in Brazil. Journal of Rural Studies, 87(September 2020), 12–22. https://doi.org/10.1016/j.jrurstud.2021.08.003
  23. Hall, J., Matos, S., & Langford, C. H. (2008). Social exclusion and transgenic technology: The case of Brazilian agriculture. Journal of Business Ethics, 77(1), 45–63. https://doi.org/10.1007/s10551-006-9293-0
  24. Haller, A., & Branca, D. (2020). Montología: una perspectiva de montaña hacia la investigación transdisciplinaria y el desarrollo sustentable. Revista de Investigaciones Altoandinas - Journal of High Andean Research, 22(4), 313–332. https://doi.org/10.18271/ria.2020.193
  25. Harden, C. P., & Byers, A. C. (2021). Anthropogenic Geomorphic Change in Mountains. Reference Module in Earth Systems and Environmental Sciences. https://doi.org/10.1016/B978-0-12-818234-5.00096-1
  26. Hernandez-Ochoa, I. M., Asseng, S., Kassie, B. T., Xiong, W., Robertson, R., Luz Pequeno, D. N., Sonder, K., Reynolds, M., Babar, M. A., Molero Milan, A., & Hoogenboom, G. (2018). Climate change impact on Mexico wheat production. Agricultural and Forest Meteorology, 263, 373–387. https://doi.org/10.1016/J.AGRFORMET.2018.09.008
  27. Hijmans, R. J., Condori, B., Carrillo, R., & Kropff, M. J. (2003). A quantitative and constraint-specific method to assess the potential impact of new agricultural technology: the case of frost resistant potato for the Altiplano (Peru and Bolivia). Agricultural Systems, 76(3), 895–911. https://doi.org/10.1016/S0308-521X(02)00081-1
  28. Imbach, P., Beardsley, M., Bouroncle, C., Medellin, C., Läderach, P., Hidalgo, H., Alfaro, E., Van Etten, J., Allan, R., Hemming, D., Stone, R., Hannah, L., & Donatti, C. I. (2017). Climate change, ecosystems and smallholder agriculture in Central America: an introduction to the special issue. Climatic Change, 141(1), 1–12. https://doi.org/10.1007/s10584-017-1920-5
  29. Kapos, V., Rhind, J., Edwards, M., Price, M., & Ravilious, C. (2000). Developing a map of the world’s mountain forests.En M. F. Price y N. Butt (Eds.). Forests in SustainableMountain Development: A State-of-Knowledge Report For2000, 4–9. https://doi.org/http://dx.doi.org/10.1079/9780851994468.0004
  30. Karandish, F. (2019). Applying grey water footprint assessment to achieve environmental sustainability within a nation under intensive agriculture: a high-resolution assessment for common agrochemicals and crops. Environmental Earth Sciences, 78(6), 0. https://doi.org/10.1007/s12665-019-8199-y
  31. Lanz, B., Dietz, S., & Swanson, T. (2018). The Expansion of Modern Agriculture and Global Biodiversity Decline: An Integrated Assessment. Ecological Economics, 144, 260–277. https://doi.org/10.1016/J.ECOLECON.2017.07.018
  32. Lenoir, J., Gégout, J. C., Marquet, P. A., De Ruffray, P., & Brisse, H. (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science, 320(5884), 1768–1771. https://doi.org/10.1126/science.1156831
  33. Lezoche, M., Panetto, H., Kacprzyk, J., Hernandez, J. E., & Alemany Díaz, M. M. E. (2020). Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture. Computers in Industry, 117, 103187. https://doi.org/10.1016/J.COMPIND.2020.103187
  34. Liu, W., Shao, X. F., Wu, C. H., & Qiao, P. (2021). A systematic literature review on applications of information and communication technologies and blockchain technologies for precision agriculture development. Journal of Cleaner Production, 298, 126763. https://doi.org/10.1016/J.JCLEPRO.2021.126763
  35. López, S. L., Aiassa, D., Benítez-Leite, S., Lajmanovich, R., Mañas, F., Poletta, G., Śnchez, N., Simoniello, M. F., & Carrasco, A. E. (2012). Pesticides used in South American GMO-based agriculture. A review of their effects on humans and animal models. In Advances in Molecular Toxicology (Vol. 6). https://doi.org/10.1016/B978-0-444-59389-4.00002-1
  36. Luque, S., Pastur, G. M., Echeverría, C., & Pacha, M. J. (2011). Overview of Biodiversity Loss in South America: A Landscape Perspective for Sustainable Forest Management and Conservation in Temperate Forests. Landscape Ecology in Forest Management and Conservation, 352–379. https://doi.org/10.1007/978-3-642-12754-0_15
  37. Lychuk, T. E., Moulin, A. P., Lemke, R. L., Izaurralde, R. C., Johnson, E. N., Olfert, O. O., & Brandt, S. A. (2019). Climate change, agricultural inputs, cropping diversity, and environment affect soil carbon and respiration: A case study in Saskatchewan, Canada. Geoderma, 337, 664–678. https://doi.org/10.1016/J.GEODERMA.2018.10.010
  38. Malanson, G. P. (2020). Ongoing Change in the Alpine Biome of North America. In Encyclopedia of the World’s Biomes (Vol. 1). Elsevier. https://doi.org/10.1016/b978-0-12-409548-9.11880-9
  39. Martínez Sifuentes, A. R., Villanueva Díaz, J., Estrada Ávalos, J., Vázquez Vázquez, C., & Orona Castillo, I. (2020). Pérdida de suelo y modificación de escurrimientos causados por el cambio de uso de la tierra en la cuenca del río Conchos, Chihuahua. Nova Scientia, 12(25). https://doi.org/10.21640/ns.v12i25.2321
  40. McLamore, E. S., Alocilja, E., Gomes, C., Gunasekaran, S., Jenkins, D., Datta, S. P. A., Li, Y., Mao, Y. (Jessie), Nugen, S. R., Reyes-De-Corcuera, J. I., Takhistov, P., Tsyusko, O., Cochran, J. P., Tzeng, T. R. (Jeremy), Yoon, J. Y., Yu, C., & Zhou, A. (2021). FEAST of biosensors: Food, environmental and agricultural sensing technologies (FEAST) in North America. Biosensors and Bioelectronics, 178, 113011. https://doi.org/10.1016/J.BIOS.2021.113011
  41. Mendoza-Ponce, A., Corona-Núñez, R., Kraxner, F., Leduc, S., & Patrizio, P. (2018). Identifying effects of land use cover changes and climate change on terrestrial ecosystems and carbon stocks in Mexico. Global Environmental Change, 53, 12–23. https://doi.org/10.1016/J.GLOENVCHA.2018.08.004
  42. Motha, R. P., & Baier, W. (2005). Impacts of present and future climate change and climate variability on agriculture in the temperate regions: North America. Increasing Climate Variability and Change: Reducing the Vulnerability of Agriculture and Forestry, 2005, 137–164. https://doi.org/10.1007/1-4020-4166-7_7
  43. Mthembu, A., & Hlophe, S. (2021). Building resilience to climate change in vulnerable communities: A case study of uMkhanyakude district municipality. Town and Regional Planning, 77(77), 42–56. https://doi.org/10.18820/2415-0495/trp77i1.4
  44. Park, K. J. (2015). Mitigating the impacts of agriculture on biodiversity: bats and their potential role as bioindicators. Mammalian Biology, 80(3), 191–204. https://doi.org/10.1016/J.MAMBIO.2014.10.004
  45. Peets, S., Gasparin, C. P., Blackburn, D. W. K., & Godwin, R. J. (2009). RFID tags for identifying and verifying agrochemicals in food traceability systems. Precision Agriculture, 10(5), 382–394. https://doi.org/10.1007/s11119-009-9106-4
  46. Pender, J. E., Hipp, A. L., Hahn, M., Kartesz, J., Nishino, M., & Starr, J. R. (2019). How sensitive are climatic niche inferences to distribution data sampling? A comparison of Biota of North America Program (BONAP) and Global Biodiversity Information Facility (GBIF) datasets. Ecological Informatics, 54, 100991. https://doi.org/10.1016/J.ECOINF.2019.100991
  47. Polk, M. H., Young, K. R., Baraer, M., Mark, B. G., McKenzie, J. M., Bury, J., & Carey, M. (2017). Exploring hydrologic connections between tropical mountain wetlands and glacier recession in Peru’s Cordillera Blanca. Applied Geography, 78, 94–103. https://doi.org/10.1016/J.APGEOG.2016.11.004
  48. Porter, E. M., Bowman, W. D., Clark, C. M., Compton, J. E., Pardo, L. H., & Soong, J. L. (2013). Interactive effects of anthropogenic nitrogen enrichment and climate change on terrestrial and aquatic biodiversity. Biogeochemistry, 114(1–3), 93–120. https://doi.org/10.1007/s10533-012-9803-3
  49. Prader, S., Kotthoff, U., Greenwood, D. R., McCarthy, F. M. G., Schmiedl, G., & Donders, T. H. (2020). New Jersey’s paleoflora and eastern North American climate through Paleogene–Neogene warm phases. Review of Palaeobotany and Palynology, 279, 104224. https://doi.org/10.1016/J.REVPALBO.2020.104224
  50. Prudente, V. H. R., Martins, V. S., Vieira, D. C., Silva, N. R. de F. e., Adami, M., & Sanches, I. D. A. (2020). Limitations of cloud cover for optical remote sensing of agricultural areas across South America. Remote Sensing Applications: Society and Environment, 20, 100414. https://doi.org/10.1016/J.RSASE.2020.100414
  51. Quinteros, E., Ribó, A., Mejía, R., López, A., Belteton, W., Comandari, A., Orantes, C. M., Pleites, E. B., Hernández, C. E., & López, D. L. (2017). Heavy metals and pesticide exposure from agricultural activities and former agrochemical factory in a Salvadoran rural community. Environmental Science and Pollution Research, 24(2), 1662–1676. https://doi.org/10.1007/s11356-016-7899-z
  52. Rashford, B. S., Adams, R. M., Wu, J. J., Voldseth, R. A., Guntenspergen, G. R., Werner, B., & Johnson, W. C. (2016). Impacts of climate change on land-use and wetland productivity in the Prairie Pothole Region of North America. Regional Environmental Change, 16(2), 515–526. https://doi.org/10.1007/s10113-015-0768-3
  53. Rotz, S., Gravely, E., Mosby, I., Duncan, E., Finnis, E., Horgan, M., LeBlanc, J., Martin, R., Neufeld, H. T., Nixon, A., Pant, L., Shalla, V., & Fraser, E. (2019). Automated pastures and the digital divide: How agricultural technologies are shaping labour and rural communities. Journal of Rural Studies, 68, 112–122. https://doi.org/10.1016/J.JRURSTUD.2019.01.023
  54. Sartorello, Y., Pastorino, A., Bogliani, G., Ghidotti, S., Viterbi, R., & Cerrato, C. (2020). The impact of pastoral activities on animal biodiversity in Europe: A systematic review and meta-analysis. Journal for Nature Conservation, 56(August 2019), 125863. https://doi.org/10.1016/j.jnc.2020.125863
  55. Schneiderbauer, S., Fontanella Pisa, P., Delves, J. L., Pedoth, L., Rufat, S., Erschbamer, M., Thaler, T., Carnelli, F., & Granados-Chahin, S. (2021). Risk perception of climate change and natural hazards in global mountain regions: A critical review. Science of The Total Environment, 784, 146957. https://doi.org/10.1016/J.SCITOTENV.2021.146957
  56. Schoville, S. D., & Rovito, S. M. (2020). Biogeography of North American Highlands. In Encyclopedia of the World’s Biomes (Vol. 1). Elsevier. https://doi.org/10.1016/b978-0-12-409548-9.11781-6
  57. Scrivanti, L. R., & Anton, A. M. (2021). Impact of climate change on the Andean distribution of Poa scaberula (Poaceae). Flora, 278, 151805. https://doi.org/10.1016/J.FLORA.2021.151805
  58. Stringer, L. C. (2008). Reviewing the International Year of Deserts and Desertification 2006: What contribution towards combating global desertification and implementing the United Nations Convention to Combat Desertification? Journal of Arid Environments, 31, 527–540. https://doi.org/https://doi.org/10.1016/j.jaridenv.2008.06.010
  59. Suárez, R. P., Goijman, A. P., Cappelletti, S., Solari, L. M., Cristos, D., Rojas, D., Krug, P., Babbitt, K. J., & Gavier-Pizarro, G. I. (2021). Combined effects of agrochemical contamination and forest loss on anuran diversity in agroecosystems of east-central Argentina. Science of The Total Environment, 759, 143435. https://doi.org/10.1016/J.SCITOTENV.2020.143435
  60. Sylvester, K. M., Gutmann, M. P., & Brown, D. G. (2016). At the margins: agriculture, subsidies and the shifting fate of North America’s native grassland. Population and Environment, 37(3), 362–390. https://doi.org/10.1007/s11111-015-0242-7
  61. Thom, D., Taylor, A. R., Seidl, R., Thuiller, W., Wang, J., Robideau, M., & Keeton, W. S. (2021). Forest structure, not climate, is the primary driver of functional diversity in northeastern North America. Science of The Total Environment, 762, 143070. https://doi.org/10.1016/J.SCITOTENV.2020.143070
  62. Tovar, C., Seijmonsbergen, A. C., & Duivenvoorden, J. F. (2013). Landscape and Urban Planning Monitoring land use and land cover change in mountain regions : An example in the Jalca grasslands of the Peruvian Andes. Landscape and Urban Planning, 112, 40–49. https://doi.org/10.1016/j.landurbplan.2012.12.003
  63. Underwood, E. C., Hollander, A. D., Safford, H. D., Kim, J. B., Srivastava, L., & Drapek, R. J. (2019). The impacts of climate change on ecosystem services in southern California. Ecosystem Services, 39, 101008. https://doi.org/10.1016/J.ECOSER.2019.101008
  64. Urban, M. (2020). Mountain linguistics. Language and Linguistics Compass, 14(9), 1–23. https://doi.org/10.1111/lnc3.12393
  65. Valbuena, D., Cely-Santos, M., & Obregón, D. (2021). Agrochemical pesticide production, trade, and hazard: Narrowing the information gap in Colombia. Journal of Environmental Management, 286, 112141. https://doi.org/10.1016/J.JENVMAN.2021.112141
  66. Visscher, A. M., Vanek, S., Meza, K., de Goede, R. G. M., Valverde, A. A., Ccanto, R., Olivera, E., Scurrah, M., & Fonte, S. J. (2020). Eucalyptus and alder field margins differ in their impact on ecosystem services and biodiversity within cropping fields of the Peruvian Andes. Agriculture, Ecosystems & Environment, 303, 107107. https://doi.org/10.1016/J.AGEE.2020.107107
  67. Wani, S. H., Sah, S. K., Sági, L., & Solymosi, K. (2015). Transplastomic plants for innovations in agriculture. A review. Agronomy for Sustainable Development, 35(4), 1391–1430. https://doi.org/10.1007/s13593-015-0310-5
  68. Webb, R. H., & Turner, R. M. (2020). Biodiversity of Perennial Vegetation in the Desert Regions of Baja California and Baja California Sur, Mexico. In Encyclopedia of the World’s Biomes (Vol. 2). Elsevier. https://doi.org/10.1016/b978-0-12-409548-9.11997-9
  69. Weiskopf, S. R., Rubenstein, M. A., Crozier, L. G., Gaichas, S., Griffis, R., Halofsky, J. E., Hyde, K. J. W., Morelli, T. L., Morisette, J. T., Muñoz, R. C., Pershing, A. J., Peterson, D. L., Poudel, R., Staudinger, M. D., Sutton-Grier, A. E., Thompson, L., Vose, J., Weltzin, J. F., & Whyte, K. P. (2020). Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science of The Total Environment, 733, 137782. https://doi.org/10.1016/J.SCITOTENV.2020.137782
  70. Wilson, S., Alavi, N., Pouliot, D., & Mitchell, G. W. (2020). Similarity between agricultural and natural land covers shapes how biodiversity responds to agricultural expansion at landscape scales. Agriculture, Ecosystems & Environment, 301, 107052. https://doi.org/10.1016/J.AGEE.2020.107052
  71. Wood, J. L., Harrison, S., Wilson, R., Emmer, A., Yarleque, C., Glasser, N. F., Torres, J. C., Caballero, A., Araujo, J., Bennett, G. L., Diaz-Moreno, A., Garay, D., Jara, H., Poma, C., Reynolds, J. M., Riveros, C. A., Romero, E., Shannon, S., Tinoco, T., … Villafane, H. (2021). Contemporary glacial lakes in the Peruvian Andes. Global and Planetary Change, 204, 103574. https://doi.org/10.1016/J.GLOPLACHA.2021.103574
  72. Xiao-Yuan, L. I. U. (2021). Agricultural products intelligent marketing technology innovation in big data era. Procedia Computer Science, 183, 648–654. https://doi.org/10.1016/J.PROCS.2021.02.110
  73. Yuvaraj, A., Thangaraj, R., Ravindran, B., Chang, S. W., & Karmegam, N. (2021). Centrality of cattle solid wastes in vermicomposting technology – A cleaner resource recovery and biowaste recycling option for agricultural and environmental sustainability. Environmental Pollution, 268, 115688. https://doi.org/10.1016/J.ENVPOL.2020.115688
  74. Zhang, Y., Li, Z., Ge, W., Chen, X., Xu, H., & Guan, H. (2021). Evaluation of the impact of extreme floods on the biodiversity of terrestrial animals. Science of The Total Environment, 790, 148227. https://doi.org/10.1016/J.SCITOTENV.2021.148227