Vol. 23 Núm. 4 (2021)
Artículo original

Presencia de hormonas esteroides en el lago Titicaca y agua potable, Puno (Perú)

Walter Zamalloa-Cuba
Facultad de Ingeniería Química, Universidad Nacional del Altiplano Puno, Perú
Sirleith Siomara Condori Canaza
Escuela Profesional de Ingeniería Química, Universidad Nacional del Altiplano
Olivia Magaly Luque Vilca
Escuela Profesional de Ingeniería en Industrias Alimentarias, Universidad Nacional de Juliaca
Valdemar Valdemar
Centro de Energía Nuclear na Agricultura, Ecotoxicology Laboratory, Brasil
Franz Zirena Vilca
Laboratorio de contaminantes orgánicos y ambiente del IINDEP, Universidad Nacional de Moquegua

Publicado 2021-10-31

Palabras clave

  • Cromatografía líquida,
  • riesgo ambiental,
  • contaminante emergente,
  • Titicaca

Cómo citar

Zamalloa-Cuba, W., Condori Canaza, S. S. ., Luque Vilca, O. M. ., Valdemar , L. T., & Zirena Vilca, F. . (2021). Presencia de hormonas esteroides en el lago Titicaca y agua potable, Puno (Perú). Revista De Investigaciones Altoandinas, 23(4). https://doi.org/10.18271/ria.2021.307

Resumen

La presencia de hormonas esteroides en las aguas de los lagos provoca la contaminación de los ecosistemas acuáticos, lo que puede provocar alteraciones endocrinas en los organismos que los habitan. Además, muchas de estas aguas se depuran y distribuyen a las poblaciones ubicadas alrededor del lago; por tanto, estos efectos podrían repetirse en los seres humanos que consumen estas aguas. Este estudio reporta la presencia de residuos de hormonas esteroides en las aguas del interior de la bahía del lago Titicaca y agua potable en la ciudad de Puno (Perú). Para la preparación de la muestra se utilizó el método de extracción en fase sólida y los análisis se desarrollaron en un sistema HPLC-DAD, laboratorio CENA- USP- Brasil. Los resultados muestran concentraciones máximas de hormonas esteroides estrona (E1) 1,56, 17 β-estradiol (E2) 2,27, 17 α-etinilestradiol (EE2) 13. 88 ng L-1 respectivamente. Estas concentraciones varían en los diferentes puntos de monitoreo, y su presencia podría ocasionar efectos ecotoxicológicos a la biota acuática endémica que habita esta parte de este lago; al mismo tiempo también podrían afectar la salud de la población humana que consume esta agua

 

 

 

Citas

  1. Adeel, M., Song, X., Wang, Y., Francis, D., & Yang, Y. (2017). Environmental impact of estrogens on human, animal and plant life: A critical review. Environment International, 99, 107–119. https://doi.org/10.1016/j.envint.2016.12.010
  2. Al-Ansari, A. M., Saleem, A., Kimpe, L. E., Trudeau, V. L., & Blais, J. M. (2011). The development of an optimized sample preparation for trace level detection of 17α-ethinylestradiol and estrone in whole fish tissue. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 879(30), 3649–3652. https://doi.org/10.1016/j.jchromb.2011.09.033
  3. Aydin, E., & Talinli, I. (2013). Analysis, occurrence and fate of commonly used pharmaceuticals and hormones in the Buyukcekmece Watershed, Turkey. Chemosphere. https://doi.org/10.1016/j.chemosphere.2012.10.074
  4. Barreiros, L., Queiroz, J. F., Magalhães, L. M., Silva, A. M. T., & Segundo, M. A. (2016). Analysis of 17-β-estradiol and 17-α-ethinylestradiol in biological and environmental matrices - A review. Microchemical Journal, 126, 243–262. https://doi.org/10.1016/j.microc.2015.12.003
  5. Bovier, T. F., Rossi, S., Mita, D. G., & Digilio, F. A. (2018). Effects of the synthetic estrogen 17-α-ethinylestradiol on Drosophila melanogaster: Dose and gender dependence. Ecotoxicology and Environmental Safety, 162(June), 625–632. https://doi.org/10.1016/j.ecoenv.2018.07.020
  6. Cavalieri, E., Frenkel, K., Liehr, J. G., Rogan, E., & Roy, D. (2000). Estrogens as Endogenous Genotoxic Agents — DNA Adducts and Mutations. In J. Natl. Cancer Inst. (Vol. 6805, pp. 75–93).
  7. Dan Liu, Wu, S., Xu, H., Zhang, Q., Zhang, S., Shi, L., Yao, C., Liu, Y., & Cheng, J. (2017). Distribution and bioaccumulation of endocrine disrupting chemicals in water, sediment and fishes in a shallow Chinese freshwater lake: Implications for ecological and human health risks. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2017.02.045
  8. Deich, C., Frazão, H. C., Appelt, J. S., Li, W., Pohlmann, T., & Waniek, J. J. (2021). Occurrence and distribution of estrogenic substances in the northern South China Sea. Science of the Total Environment, 770, 145239. https://doi.org/10.1016/j.scitotenv.2021.145239
  9. Dong, Z., Li, X., Huang, S., Zhang, N., Guo, Y., & Wang, Z. (2020). Vitellogenins and choriogenins are biomarkers for monitoring Oryzias curvinotus juveniles exposed to 17 β - estradiol. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 236(April), 108800. https://doi.org/10.1016/j.cbpc.2020.108800
  10. Fent, K. (2015). Progestins as endocrine disrupters in aquatic ecosystems: Concentrations, effects and risk assessment. In Environment International. https://doi.org/10.1016/j.envint.2015.06.012
  11. Golnick, P. C., Chaffin, J. D., Bridgeman, T. B., Zellner, B. C., & Simons, V. E. (2016). A comparison of water sampling and analytical methods in western Lake Erie. Journal of Great Lakes Research, 42(5), 965–971. https://doi.org/10.1016/j.jglr.2016.07.031
  12. González-Hernando, C., Souza-de Almeida, M., Martín-Villamor, P., Cao-Torija, M. J., & Castro-Alija, M. J. (2013). La píldora anticonceptiva a debate. Enfermería Universitaria, 10(3), 98–104. https://doi.org/10.1016/s1665-7063(13)72635-6
  13. González, A., Kroll, K. J., Silva-Sanchez, C., Carriquiriborde, P., Fernandino, J. I., Denslow, N. D., & Somoza, G. M. (2020). Steroid hormones and estrogenic activity in the wastewater outfall and receiving waters of the Chascomús chained shallow lakes system (Argentina). Science of the Total Environment, 743, 140401. https://doi.org/10.1016/j.scitotenv.2020.140401
  14. Hansen, P. D., Dizer, H., Hock, B., Marx, A., Sherry, J., McMaster, M., & Blaise, C. (1998). Vitellogenin - A biomarker for endocrine disruptors. TrAC - Trends in Analytical Chemistry. https://doi.org/10.1016/S0165-9936(98)00020-X
  15. Hortense Torres, N. (2014). Determinação de hormônios e antimicrobianos no Rio Piracicaba e testes de toxicidade aguda com Daphnia magna [Universidade de Sao Paulo]. https://teses.usp.br/teses/disponiveis/64/64135/tde-16042014-155332/es.php
  16. Jia, Y., Hammers-Wirtz, M., Crawford, S. E., Chen, Q., Seiler, T. B., Schäffer, A., & Hollert, H. (2019). Effect-based and chemical analyses of agonistic and antagonistic endocrine disruptors in multiple matrices of eutrophic freshwaters. Science of the Total Environment, 651, 1096–1104. https://doi.org/10.1016/j.scitotenv.2018.09.199
  17. Katrina, K. M., & Espino, M. P. (2020). Occurrence and distribution of hormones and bisphenol A in Laguna Lake, Philippines. Chemosphere, 256, 127122. https://doi.org/10.1016/j.chemosphere.2020.127122
  18. Langenbach, T. (2013). Persistence and Bioaccumulation of Persistent Organic Pollutants (POPs). Applied Bioremediation - Active and Passive Approaches. https://doi.org/10.5772/56418
  19. Mazellier, P., Méité, L., & De Laat, J. (2008). Photodegradation of the steroid hormones 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) in dilute aqueous solution. Chemosphere. https://doi.org/10.1016/j.chemosphere.2008.07.046
  20. Nielsen, C. U., Pedersen, M., Müller, S., Kæstel, T., Bjerg, M., Ulaganathan, N., Nielsen, S., Carlsen, K. L., Nøhr, M. K., & Holm, R. (2021). Inhibitory Effects of 17-α-Ethinyl-Estradiol and 17-β-Estradiol on Transport Via the Intestinal Proton-Coupled Amino Acid Transporter (PAT1) Investigated In Vitro and In Vivo. Journal of Pharmaceutical Sciences, 110(1), 354–364. https://doi.org/10.1016/j.xphs.2020.08.010
  21. Pai, C. W., Leong, D., Chen, C. Y., & Wang, G. S. (2020). Occurrences of pharmaceuticals and personal care products in the drinking water of Taiwan and their removal in conventional water treatment processes. Chemosphere, 256, 127002. https://doi.org/10.1016/j.chemosphere.2020.127002
  22. Purdom, C. E., Hardiman, P. A., Bye, V. J., Eno, N. C., Tyler, C. R., & Sumpter, J. P. (1994). Estrogenic Effects of Effluents from Sewage Treatment Works. Chemistry and Ecology. https://doi.org/10.1080/02757549408038554
  23. Sacdal, R., Madriaga, J., & Espino, M. P. (2020). Overview of the analysis, occurrence and ecological effects of hormones in lake waters in Asia. Environmental Research, 182(November 2019), 109091. https://doi.org/10.1016/j.envres.2019.109091
  24. Torres, N. H., Santos, G. de O. S., Romanholo Ferreira, L. F., Américo-Pinheiro, J. H. P., Eguiluz, K. I. B., & Salazar-Banda, G. R. (2021). Environmental aspects of hormones estriol, 17β-estradiol and 17α-ethinylestradiol: Electrochemical processes as next-generation technologies for their removal in water matrices. Chemosphere, 267, 128888. https://doi.org/10.1016/j.chemosphere.2020.128888
  25. Wang, J., & Zhu, Y. (2017). Occurrence and risk assessment of estrogenic compounds in the East Lake, China. Environmental Toxicology and Pharmacology. https://doi.org/10.1016/j.etap.2017.03.018
  26. Wang, S., Zhu, Z., He, J., Yue, X., Pan, J., & Wang, Z. (2018). Steroidal and phenolic endocrine disrupting chemicals (EDCs) in surface water of Bahe River, China: Distribution, bioaccumulation, risk assessment and estrogenic effect on Hemiculter leucisculus. Environmental Pollution, 243, 103–114. https://doi.org/10.1016/j.envpol.2018.08.063
  27. Wee, S. Y., Aris, A. Z., Yusoff, F. M., & Praveena, S. M. (2019). Occurrence and risk assessment of multiclass endocrine disrupting compounds in an urban tropical river and a proposed risk management and monitoring framework. Science of the Total Environment, 671, 431–442. https://doi.org/10.1016/j.scitotenv.2019.03.243
  28. Xu, S., Sun, J., Zhang, Y., Ji, J., & Sun, X. (2021). Opposite estrogen effects of estrone and 2-hydroxyestrone on MCF-7 sensitivity to the cytotoxic action of cell growth, oxidative stress and inflammation activity. Ecotoxicology and Environmental Safety, 209, 111754. https://doi.org/10.1016/j.ecoenv.2020.111754
  29. Yang, Y., Cao, X., Zhang, M., & Wang, J. (2015). Occurrence and distribution of endocrine-disrupting compounds in the Honghu Lake and East Dongting Lake along the Central Yangtze River, China. Environmental Science and Pollution Research, 22(22), 17644–17652. https://doi.org/10.1007/s11356-015-4980-y
  30. Zhang, F., Yu, Y., Pan, C., Saleem, M., & Wu, Y. (2021). Response of periphytic biofilm in water to estrone exposure: Phenomenon and mechanism. Ecotoxicology and Environmental Safety, 207, 111513. https://doi.org/10.1016/j.ecoenv.2020.111513
  31. Zhou, L. J., Zhang, B. B., Zhao, Y. G., & Wu, Q. L. (2016). Occurrence, spatiotemporal distribution, and ecological risks of steroids in a large shallow Chinese lake, Lake Taihu. Science of the Total Environment, 557–558, 68–79. https://doi.org/10.1016/j.scitotenv.2016.03.059
  32. Zhu, B. T., & Lee, A. J. (2005). NADPH-dependent metabolism of 17β-estradiol and estrone to polar and nonpolar metabolites by human tissues and cytochrome P450 isoforms. Steroids, 70(4), 225–244. https://doi.org/10.1016/j.steroids.2005.01.002