Vol. 27 (2025): Publicación continua
Artículo original

Eficiencia del biocarbón activado de Daucus carota con perlas de alginato de calcio en la remoción de arsénico, muestras sintéticas

Carlos Romel Pari Salazar
Universidad Cesar Vallejo, Facultad de Ingeniería y Arquitectura, Escuela Profesional de Ingeniería Ambiental, Av. Del Parque 640, San Juan de Lurigancho 15434, Lima, Perú.

Publicado 30-09-2025

Palabras clave

  • Arsénico,
  • Biocarbón activado,
  • Daucus carota,
  • pH,
  • Remoción

Cómo citar

Pari Salazar, C. R. (2025). Eficiencia del biocarbón activado de Daucus carota con perlas de alginato de calcio en la remoción de arsénico, muestras sintéticas. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 27, e27705. https://doi.org/10.18271/ria.2025.705

Resumen

El estudio evalúa la eficiencia del biocarbón activado de Daucus carota con perlas de alginato de calcio para remover arsénico en muestras sintéticas, promoviendo tecnologías sostenibles para descontaminar aguas. Se analizaron las interacciones entre la concentración del adsorbente, el pH y el tiempo de contacto para optimizar la adsorción. La investigación, de enfoque cuantitativo y aplicada, utilizó tres concentraciones de biocarbón (1 mg/L, 2 mg/L y 3 mg/L), tres niveles de pH (4, 7 y 9) y tres tiempos de contacto (30, 60 y 120 minutos). Los resultados mostraron que la mayor eficiencia (93.263%) se logró con 3 mg/L de adsorbente a pH neutro (7) tras 120 minutos. En contraste, la menor eficiencia (51.31%) ocurrió a pH 9 con 1 mg/L de adsorbente en el mismo tiempo. Además, el tiempo de contacto influyó significativamente en la adsorción, mejorando progresivamente hasta los 120 minutos. Estos hallazgos destacan que el biocarbón activado de Daucus carota es un adsorbente efectivo para remover arsénico, especialmente en condiciones de pH neutro y tiempos prolongados. Su uso representa una alternativa viable y sostenible para tratar aguas contaminadas, contribuyendo a estrategias eficientes de gestión ambiental y reducción de metales pesados en ecosistemas acuáticos, alineándose con los objetivos de desarrollo sostenible.

Referencias

  1. Ali, H., Ahmed, S., Hsini, A., Kizito, S., Naciri, Y., Djellabi, R., Abid, M., Raza, W., Hassan, N., Saif Ur Rehman, M., Jamal Khan, A., Khan, M., Zia Ul Haq, M., Aboagye, D., Kashif Irshad, M., Hassan, M., Hayat, A., Wu, B., Qadeer, A., & Ajmal, Z. (2022). Efficiency of a novel nitrogen-doped Fe3O4 impregnated biochar (N/Fe3O4@BC) for arsenic (III and V) removal from aqueous solution: Insight into mechanistic understanding and reusability potential. Arabian Journal of Chemistry, 15(11), 104209. https://doi.org/10.1016/J.ARABJC.2022.104209
  2. Alka, S., Shahir, S., Ibrahim, N., Ndejiko, M. J., Vo, D. V. N., & Manan, F. A. (2021). Arsenic removal technologies and future trends: A mini review. Journal of Cleaner Production, 278, 123805. https://doi.org/10.1016/J.JCLEPRO.2020.123805
  3. ALSamman, M. T., & Sánchez, J. (2023). Adsorption of Copper and Arsenic from Water Using a Semi-Interpenetrating Polymer Network Based on Alginate and Chitosan. Polymers 2023, Vol. 15, Page 2192, 15(9), 2192. https://doi.org/10.3390/POLYM15092192
  4. Ayuso-Álvarez, A., Nuñez, O., Martín-Méndez, I., Bel-Lán, A., Tellez-Plaza, M., Pérez-Gómez, B., Galán, I., & Fernández-Navarro, P. (2022). Metal and metalloid levels in topsoil and municipal cardiovascular mortality in Spain. Environmental Research, 204, 112395. https://doi.org/10.1016/J.ENVRES.2021.112395
  5. Azzam, M. A., Rizwan Khan, M., & Moustafa Youssef, H. (2023). Drinking water as a substantial source of toxic alkali, alkaline and heavy metals: Toxicity and their implications on human health. Journal of King Saud University–Science, 35(6), 102761. https://doi.org/10.1016/J.JKSUS.2023.102761
  6. Bhatti, Z. A., Qureshi, K., Maitlo, G., & Ahmed, S. (2020). Study of PAN Fiber and Iron ore Adsorbents for Arsenic Removal. Civil Engineering Journal, 6(3), 548-562. https://doi.org/10.28991/CEJ-2020-03091491
  7. Chen, Q. Y., & Costa, M. (2021). Arsenic: A Global Environmental Challenge. Annual Review of Pharmacology and Toxicology, 61(Volume 61, 2021), 47-63. https://doi.org/10.1146/ANNUREV-PHARMTOX-030220-013418/CITE/REFWORKS
  8. Das, S., & Mondal, S. (2023). Synthesis of magnetic biochar derived from waste wood of acacia Auriculiformis for the removal of arsenic. Environmental Nanotechnology, Monitoring & Management, 20, 100893. https://doi.org/10.1016/J.ENMM.2023.100893
  9. Dias, A. C., & Fontes, M. P. F. (2020). Arsenic (V) removal from water using hydrotalcites as adsorbents: A critical review. Applied Clay Science, 191, 105615. https://doi.org/10.1016/J.CLAY.2020.105615
  10. Gayathiri, M., Pulingam, T., Lee, K. T., & Sudesh, K. (2022). Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism. Chemosphere, 294, 133764. https://doi.org/10.1016/J.CHEMOSPHERE.2022.133764
  11. Hao, C., Chen, B., Sánchez de la Campa, A. M., & de la Rosa, J. D. (2020). Increased industry contribution and atmospheric heavy metals from economic recovery in Spain. Journal of Cleaner Production, 246, 119024. https://doi.org/10.1016/J.JCLEPRO.2019.119024
  12. Hernández, R., Fernández, C., & Baptista, M. D. P. (2014). Metodología de la investigación. Metodología de la investigación, 91. https://dialnet.unirioja.es/servlet/libro?codigo=775008
  13. Ho, P. N. T., Nguyen, T. B., Dong, C. Di, Ho, H. T. T., Phan, C. T., & Lai, T. H. D. (2024). Arsenic adsorption by activated biochar derived from water hyacinth. Case Studies in Chemical and Environmental Engineering, 10, 100907. https://doi.org/10.1016/J.CSCEE.2024.100907
  14. Kachhwaha, V., Kumari, P., Giri, N., & Mishra, P. (2023). Evaluation of Lead Removal by Activated Citrus Sinensis Biochar Impregnated with Calcium Alginate Beads. Oriental Journal Of Chemistry, 39(6), 1547-1555. https://doi.org/10.13005/OJC/390615
  15. Khan, N., Hoque, S. F., Mahmud, Z. H., Islam, M. R., Alam, M. A. U., Islam, Md. S., & Charles, K. J. (2024). Water quality and unseen health outcomes: A cross-sectional study on arsenic contamination, subclinical disease and psychosocial distress in Bangladesh. SSM–Mental Health, 6, 100344. https://doi.org/10.1016/J.SSMMH.2024.100344
  16. Lakshmana Naik, R., Rupas Kumar, M., & Bala Narsaiah, T. (2023). Removal of heavy metals (Cu & Ni) from wastewater using rice husk and orange peel as adsorbents. Materials Today: Proceedings, 72, 92-98. https://doi.org/10.1016/J.MATPR.2022.06.112
  17. Mobarak, M., Salah, A. M., Selim, A. Q., Al-arifi, N., Salama, Y. F., Li, Z., & Seliem, M. K. (2024). Magnetic hybrid spheres of glauconite/calcium alginate interface for methylene blue adsorption: Synthesis, characterization, and novel physicochemical insights through theoretical treatment. International Journal of Biological Macromolecules, 277, 134106. https://doi.org/10.1016/J.IJBIOMAC.2024.134106
  18. Mohan, D., Markandeya, Dey, S., Dwivedi, S. B., & Shukla, S. P. (2019). Adsorption of arsenic using low cost adsorbents: Guava leaf biomass, mango bark and bagasse. Current Science, 117(4), 649-661. https://doi.org/10.18520/cs/v117/i4/649-661
  19. Papadaki, M. I., Mendoza-Castillo, D. I., Reynel-Avila, H. E., Bonilla-Petriciolet, A., & Georgopoulos, S. (2021). Nut Shells as Adsorbents of Pollutants: Research and Perspectives. Frontiers in Chemical Engineering, 3, 640983. https://doi.org/10.3389/FCENG.2021.640983/BIBTEX
  20. Pérez-Cid, B., Calvar, S., Moldes, A. B., & Cruz, J. M. (2020). Effective Removal of Cyanide and Heavy Metals from an Industrial Electroplating Stream Using Calcium Alginate Hydrogels. Molecules 2020, Vol. 25, Page 5183, 25(21), 5183. https://doi.org/10.3390/MOLECULES25215183
  21. Qasem, N. A. A., Mohammed, R. H., & Lawal, D. U. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. npj Clean Water 2021 4:1, 4(1), 1-15. https://doi.org/10.1038/s41545-021-00127-0
  22. Rahdar, S., Taghavi, M., Khaksefidi, R., & Ahmadi, S. (2019). Adsorption of arsenic (V) from aqueous solution using modified saxaul ash: isotherm and thermodynamic study. Applied Water Science, 9(4), 1-9. https://doi.org/10.1007/S13201-019-0974-0/TABLES/4
  23. Raji, Z., Karim, A., Karam, A., & Khalloufi, S. (2023). Adsorption of Heavy Metals: Mechanisms, Kinetics, and Applications of Various Adsorbents in Wastewater Remediation—A Review. Waste, 1(3), 775-805. https://doi.org/10.3390/WASTE1030046
  24. Sakhiya, A. K., Kaushal, P., & Vijay, V. K. (2023). Potential of rice straw derived activated biochar to remove arsenic and manganese from groundwater: A cleaner approach in the Indo-Gangetic Plain. Applied Surface Science Advances, 17, 100443. https://doi.org/10.1016/J.APSADV.2023.100443
  25. Sevak, P., & Pushkar, B. (2024). Arsenic pollution cycle, toxicity and sustainable remediation technologies: A comprehensive review and bibliometric analysis. Journal of Environmental Management, 349, 119504. https://doi.org/10.1016/J.JENVMAN.2023.119504
  26. Shah, A., Arjunan, A., Thumma, A., Zakharova, J., Bolarinwa, T., Devi, S., & Batool, M. (2024). Adsorptive removal of arsenic from drinking water using KOH-modified sewage sludge-derived biochar. Cleaner Water, 2, 100022. https://doi.org/10.1016/J.CLWAT.2024.100022
  27. Shangguan, Y., Li, B., Zhuang, X., Querol, X., Moreno, N., Huang, P., Guo, Y., Shi, Y., Wu, T., & Sola, P. C. (2025). Arsenic distribution and speciation in deposited coal mine dust. Journal of hazardous materials, 482. https://doi.org/10.1016/J.JHAZMAT.2024.136537
  28. Yaqub, A., Syed, S. M., Ajab, H., & Zia Ul Haq, M. (2023). Activated carbon derived from Dodonaea Viscosa into beads of calcium-alginate for the sorption of methylene blue (MB): Kinetics, equilibrium and thermodynamics. Journal of Environmental Management, 327, 116925. https://doi.org/10.1016/J.JENVMAN.2022.116925
  29. Yoon, K., Cho, D. W., Kwon, G., Rinklebe, J., Wang, H., & Song, H. (2023). Practical approach of As(V) adsorption by fabricating biochar with low basicity from FeCl3 and lignin. Chemosphere, 329, 138665. https://doi.org/10.1016/J.CHEMOSPHERE.2023.138665
  30. Zhang, K., Chang, S., Zhang, Q., Bai, Y., Wang, E., Zhang, M., Fu, Q., Wei, L., & Yu, Y. (2023). Heavy metals in influent and effluent from 146 drinking water treatment plants across China: Occurrence, explanatory factors, probabilistic health risk, and removal efficiency. Journal of Hazardous Materials, 450, 131003. https://doi.org/10.1016/j.jhazmat.2023.131003