Vol. 20 Núm. 3 (2018)
Artículo de revisión

Glifosato en cuerpos hídricos: problema ambiental

Franz Zirena Vilca
Universidad Nacional de Moquegua - Moquegua Perú
Wildor Gosgot Angeles
Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas – Perú
Clara Nely Campos Quiróz
Universidad Nacional del Altiplano Puno Perú
Walter Alejandro Zamalloa Cuba
Universidad Nacional del Altiplano Puno Perú

Publicado 2018-07-27

Palabras clave

  • Polluted water,
  • pesticides,
  • environmental impact,
  • ecological risk
  • Agua contaminada,
  • impacto ambiental,
  • plaguicidas,
  • riesgo ecológico

Cómo citar

Zirena Vilca, F. ., Gosgot Angeles, W. ., Campos Quiróz, C. N. ., & Zamalloa Cuba, W. A. . (2018). Glifosato en cuerpos hídricos: problema ambiental. Revista De Investigaciones Altoandinas, 20(3), 3258-332. https://doi.org/10.18271/ria.2018.396

Resumen

La necesidad de incrementar la producción de alimentos en el mundo está haciendo con que los sistemas agrícolas estén siendo más extensivos, caracterizándose por sistemas de producción a gran escala, donde el control de plagas y de malezas se hace mediante la aplicación de productos químicos. Muchos de los cuales son parte fundamental de un paquete tecnológico como es el caso del glifosato en el cultivo de soja transgénica; dada su alta eficacia en el control de malezas. Sin embargo, residuos de este producto puede contaminar varios compartimientos del ecosistema, siendo el ecosistema acuático el más perjudicado. Por lo que, serán abordados varios efectos adversos de este compuesto en organismos que habitan estos ecosistemas.

Citas

  1. Achiorno, C. L., Villalobos, C. de, & Ferrari, L. (2008). Toxicity of the herbicide glyphosate to Chordodes nobilii (Gordiida, Nematomorpha). Chemosphere, 71, 1816–1822. Doi : 10.1016/J.CHEMOSPHERE.2008.02.001
  2. Bai, S. H., & Ogbourne, S. M. (2016). Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination. Environmental Science and Pollution Research, 23, 18988–19001. Doi :10.1007/s11356-016-7425-3
  3. Birch, H., Mikkelsen, P. S., Jensen, J. K., & Lützhøft, H.-C. H. (2011). Micropollutants in stormwater runoff and combined sewer overflow in the Copenhagen area, Denmark. Water Science and Technology : A Journal of the International Association on Water Pollution Research, 64, 485–93. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/220970247
  4. Brahushi, F., Kengara, F. O., Song, Y., Jiang, X., Munch, J. C. and Wang, F. (2017) 'Fate Processes of Chlorobenzenes in Soil and Potential Remediation Strategies: A Review', Pedosphere, 27, 407-420
  5. Bricheux, G., Le Moal, G., Hennequin, C., Coffe, G., Donnadieu, F., Portelli, C., Forestier, C. (2013). Characterization and evolution of natural aquatic biofilm communities exposed in vitro to herbicides. Ecotoxicology and Environmental Safety, 88, 126–134. Doi:10.1016/J.ECOENV.2012.11.003
  6. Bringolf, R. B., Cope, W. G., Mosher, S., Barnhart, M. C., & Shea, D. (2007). Acute and chronic toxicity of glyphosate compounds to glochidia and juveniles of lampsilis siliquoidea (unionidae). Environmental Toxicology and Chemistry, 26, 2094. Doi:10.1897/06-519R1.1
  7. Chekan, J. R., Cogan, D. P., & Nair, S. K. (2016). Molecular basis for resistance against phosphonate antibiotics and herbicides. Med. Chem. Commun., 7, 28–36. Doi:10.1039/C5MD00351B
  8. Daouk, S., Copin, P.-J., Rossi, L., Chèvre, N., & Pfeifer, H.-R. (2013). Dynamics and environmental risk assessment of the herbicide glyphosate and its metabolite AMPA in a small vineyard river of the Lake Geneva catchment. Environmental Toxicology and Chemistry, 32, 2035–2044.Doi:10.1002/etc.2276
  9. de Brito Rodrigues, L., de Oliveira, R., Abe, F. R., Brito, L. B., Moura, D. S., Valadares, M. C., de Oliveira, G. A. R. (2017). Ecotoxicological assessment of glyphosate-based herbicides: Effects on different organisms. Environmental Toxicology and Chemistry, 36, 1755–1763. Doi:10.1002/etc.3580
  10. Grandcoin, A., Piel, S., & Baurès, E. (2017). AminoMethylPhosphonic acid (AMPA) in natural waters: Its sources, behavior and environmental fate. Water Research, 117, 187–197. https://doi.org/10.1016/J.WATRES.2017.03.055
  11. Guilherme, S., Gaivão, I., Santos, M. A., & Pacheco, M. (2009). Tissue specific DNA damage in the European eel (Anguilla anguilla) following a short-term exposure to a glyphosate-based herbicide. Toxicology Letters, 189, S212. Doi:10.1016/J.TOXLET.2009.06.550
  12. Kelly, D. W., Poulin, R., Tompkins, D. M., & Townsend, C. R. (2010). Synergistic effects of glyphosate formulation and parasite infection on fish malformations and survival. Journal of Applied Ecology, 47, 498–504.Doi :10.1111/j.1365-2664.2010.01791.x
  13. Koch, C. and Sures, B. (2018) 'Environmental concentrations and toxicology of 2,4,6-tribromophenol (TBP)', Environmental Pollution, 233,706-713.
  14. Kreutz, L. C., Gil Barcellos, L. J., de Faria Valle, S., de Oliveira Silva, T., Anziliero, D., Davi dos Santos, E., Zanatta, R. (2011). Altered hematological and immunological parameters in silver catfish (Rhamdia quelen) following short term exposure to sublethal concentration of glyphosate. Fish & Shellfish Immunology, 30, 51–57. Doi:10.1016/J.FSI.2010.09.012
  15. Li, M.-H., Ruan, L.-Y., Zhou, J.-W., Fu, Y.-H., Jiang, L., Zhao, H., & Wang, J.-S. (2017). Metabolic profiling of goldfish (Carassius auratis) after long-term glyphosate-based herbicide exposure. Aquatic Toxicology, 188, 159–169. Doi:10.1016/J.AQUATOX.2017.05.004
  16. Lindhardt, B., Abildtrup, C., Vosgerau, H., Olsen, P., Torp, S., Iversen, B. V, Gravesen, P. (2013). The danish pesticide leaching assessment programme. Site Characterization and monitoring design, Geological survey of Denmark and Greeland.
  17. Mamy, L., Barriuso, E., & Gabrielle, B. (2016). Glyphosate fate in soils when arriving in plant residues. Chemosphere, 154, 425–433. Doi:10.1016/j.chemosphere.2016.03.104
  18. Maqueda, C., Undabeytia, T., Villaverde, J., & Morillo, E. (2017). Behaviour of glyphosate in a reservoir and the surrounding agricultural soils. Science of the Total Environment, 593–594, 787–795. Doi:10.1016/j.scitotenv.2017.03.202
  19. Mistretta, P., & Durkin, P. R. (2011). Human Health and Ecological Risk Assessment. Retrieved from https://www.fs.fed.us/foresthealth/pesticide/pdfs/Glyphosate_SERA_TR-052-22-03b.pdf
  20. Monsanto. Backgrounder – Glyphosate and Water Quality. (2014). Retrieved from https://monsanto.com/app/uploads/2017/06/glyphosate-and-water-quality.pdf
  21. Moore, D. R. J., Greer, C. D., Manning, G., Wooding, K., Beckett, K. J., Brain, R. A. and Marshall, G. (2017) 'A weight-of-evidence approach for deriving a level of concern for atrazine that is protective of aquatic plant communities', Integrated Environmental Assessment and Management, 13, 686-701.
  22. Pavlidis, G. and Tsihrintzis, V. A. (2018) 'Environmental Benefits and Control of Pollution to Surface Water and Groundwater by Agroforestry Systems: a Review', Water Resources Management, 32, 1-29.
  23. Pérez, G. L., Torremorell, A., Mugni, H., Rodríguez, P., Solange Vera, M., do Nascimento, M., … Zagarese, H. (2007). Effects of the herbicide Roundup on freshwater microbial communities: a mesocosm study. Ecological Applications : A Publication of the Ecological Society of America, 17, 2310–22. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18213971
  24. Pizarro, H., Vera, M. S., Vinocur, A., Pérez, G., Ferraro, M., Menéndez Helman, R. J., & dos Santos Afonso, M. (2016). Glyphosate input modifies microbial community structure in clear and turbid freshwater systems. Environmental Science and Pollution Research, 23, 5143–5153.Doi:10.1007/s11356-015-5748-0
  25. Prosser, R. S., Rodriguez-Gil, J. L., Solomon, K. R., Sibley, P. K., & Poirier, D. G. (2017). Effects of the herbicide surfactant MON 0818 on oviposition and viability of eggs of the ramshorn snail (Planorbella pilsbryi). Environmental Toxicology and Chemistry, 36, 522–531. Doi:10.1002/etc.3571
  26. Rendon-von Osten, J., & Dzul-Caamal, R. (2017). Glyphosate Residues in Groundwater, Drinking Water and Urine of Subsistence Farmers from Intensive Agriculture Localities: A Survey in Hopelchén, Campeche, Mexico. International Journal of Environmental Research and Public Health, 14, 595. Doi:10.3390/ijerph14060595
  27. Rodriguez-Gil, J. L., Prosser, R., Hanta, G., Poirier, D., Lissemore, L., Hanson, M., & Solomon, K. R. (2017). Aquatic hazard assessment of MON 0818, a commercial mixture of alkylamine ethoxylates commonly used in glyphosate-containing herbicide formulations. Part 2: Roles of sediment, temperature, and capacity for recovery following a pulsed exposure. Environmental Toxicology and Chemistry, 36, 512–521. Doi:10.1002/etc.3558
  28. Roy, N. M., Carneiro, B., & Ochs, J. (2016). Glyphosate induces neurotoxicity in zebrafish. Environmental Toxicology and Pharmacology, 42, 45–54. Doi:10.1016/J.ETAP.2016.01.003
  29. Sandrini, J. Z., Rola, R. C., Lopes, F. M., Buffon, H. F., Freitas, M. M., Martins, C. de M. G., & da Rosa, C. E. (2013). Effects of glyphosate on cholinesterase activity of the mussel Perna perna and the fish Danio rerio and Jenynsia multidentata: In vitro studies. Aquatic Toxicology, 130–131, 171–173. Doi:10.1016/J.AQUATOX.2013.01.006
  30. Sihtmäe, M., Blinova, I., Künnis-Beres, K., Kanarbik, L., Heinlaan, M., & Kahru, A. (2013). Ecotoxicological effects of different glyphosate formulations. Applied Soil Ecology, 72, 215–224. Doi:10.1016/J.APSOIL.2013.07.005
  31. Stachowski-Haberkorn, S., Becker, B., Marie, D., Haberkorn, H., Coroller, L., & de la Broise, D. (2008). Impact of Roundup on the marine microbial community, as shown by an in situ microcosm experiment. Aquatic Toxicology, 89, 232–241. Doi:10.1016/J.AQUATOX.2008.07.004
  32. Szarek, J., Siwicki, A., Andrzejewska, A., Terech-Majewska, E., & Banaszkiewicz, T. (2000). Effects of the herbicide RoundupTM on the ultrastructural pattern of hepatocytes in carp (Cyprinus carpio). Marine Environmental Research, 50, 263–266. Doi:10.1016/S0141-1136(00)00088-X
  33. Tromas, N., Fortin, N., Bedrani, L., Terrat, Y., Cardoso, P., Bird, D.,Shapiro, B. J. (2017). Characterising and predicting cyanobacterial blooms in an 8-year amplicon sequencing time course. The ISME Journal, 11, 1746–1763. Doi:10.1038/ismej.2017.58
  34. Van Bruggen, A. H. C., He, M. M., Shin, K., Mai, V., Jeong, K. C., Finckh, M. R., & Morris, J. G. (2018). Environmental and health effects of the herbicide glyphosate. Science of The Total Environment, 616–617, 255–268. Doi:10.1016/J.SCITOTENV.2017.10.309
  35. Wang, C., Lin, X., Li, L., & Lin, S. (2016). Differential growth responses of marine phytoplankton to herbicide glyphosate. PLoS ONE, 11, e0151633. Doi:10.1371/journal.pone.0151633
  36. Wang, S., Seiwert, B., Kästner, M., Miltner, A., Schäffer, A., Reemtsma, T., Nowak, K. M. (2016). (Bio)degradation of glyphosate in water-sediment microcosms – A stable isotope co-labeling approach. Water Research, 99, 91–100. Doi:10.1016/J.WATRES.2016.04.041
  37. Zhang, C., Hu, X., Luo, J., Wu, Z., Wang, L., Li, B., Sun, G. (2015a). Degradation dynamics of glyphosate in different types of citrus orchard soils in China. Molecules, 20, 1161–1175. Doi:10.3390/molecules20011161
  38. Zhang, S., Xu, J., Kuang, X., Li, S., Li, X., Chen, D., Feng, X. (2017). Biological impacts of glyphosate on morphology, embryo biomechanics and larval behavior in zebrafish (Danio rerio). Chemosphere, 181, 270–280. Doi.org/10.1016/J.CHEMOSPHERE.2017.04.094