Vol. 26 No. 1 (2024)
Original articles

Water stress in commercial potato (Solanum tuberosum L.) cultivars in the central region of Peru

Emmanuel Perez
Universidad Nacional del Centro del Perú, Facultad de Agronomía, Av. Mariscal Castilla N° 390. El Tambo, Huancayo, Perú
Robert Richard Rafael Rutte
Universidad Nacional Tecnológica de Lima Sur, Facultad de Ingeniería y Gestión, Sector 3 Grupo 1A 03 (Av. Central y Av. Bolivar) Villa El Salvador C.P. 15834, Lima, Perú
Gustavo Osorio
Universidad Nacional del Centro del Perú, Facultad de Agronomía, Av. Mariscal Castilla N° 390. El Tambo, Huancayo, Perú

Published 2024-01-31

Keywords

  • Solanum tuberosum; drought; cultivar; irrigation; frequency; potato

How to Cite

Perez, E., Rafael Rutte, R. R., & Osorio, G. (2024). Water stress in commercial potato (Solanum tuberosum L.) cultivars in the central region of Peru. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 26(1), 46-55. https://doi.org/10.18271/ria.2024.587

Abstract

Potato (Solanum tuberosum L.) is a crop of great importance worldwide due to its high nutritional value and its adaptability to different climatic conditions. In Peru, it is one of the main crops in terms of production and consumption, with Junín being one of the departments with the highest production. The aim of this research was to evaluate the effect of water stress on the growth and yield of commercial potato cultivars. Four irrigation frequencies (field capacity, every 7, 14 and 21 days) and five commercial potato cultivars (Canchán, Yungay, Wankita, Serranita and Shulay) were evaluated, distributed in a completely randomized design with a 5x4 factorial arrangement, with five replications. It was installed under greenhouse conditions and seven variables (plant emergence, plant height, number of stems, number and weight of tubers, transpiration rate and dry matter) were evaluated. The results showed statistical differences in all the variables evaluated. It was found that the Canchán cultivar with irrigation frequency every 21 days was more tolerant to drought with an average rate of 0.69 ml, the maximum permissible irrigation limit in greenhouse is every 14 days. The highest number of tubers was observed in the Wankita cultivar with 29.8 tubers under a drought stress of 14 days. The highest tuber weight was obtained with the Yungay cultivar at field capacity with 0.438 kg per plant. It is concluded that water stress influences potato growth and production.

References

  1. Ahmadi, S. H., Andersen, M. N., Plauborg, F., Poulsen, R. T., Jensen, C. R., Sepaskhah, A. R., and Hansen, S. (2010). Effects of irrigation strategies and soils on field-grown potatoes: Yield and water productivity. Agricultural Water Management, 97(11), 1923-1930. https://doi.org/10.1016/j.agwat.2010.07.007
  2. Aksoy, E., Demirel, U. Bakhsh, A., Bakar, M., Naeem, M., Saeed, F., Caliskan, S., & Caliskan, M. E. (2021). Recent Advances in Potato (Solanum tuberosum L.) Breeding. In: Al-Khayri, J.M., Jain, S.M. Johnson, D.V. (eds) Advances in Plant Breeding Strategies: Vegetable Crops. Springer, Cham. http://doi.org/10.1007/978-3-030-66965-2_10
  3. Aliche, E. B., Oortwijn, M., Theeuwen, T. P., Bachem, C. W., Visser, R. G., & van der Linden, G. (2018). Drought response in field grown potatoes and the interactions between canopy growth and yield. Agricultural Water Management, 206, 20-30. https://doi.org/10.1016/j.agwat.2018.04.013
  4. Allen, R., Pereira, L., Raes, D., & Smith, M. (2006). Evapotranspiración del cultivo. Guías para la determinación de los requerimientos de agua de los cultivos. Estudio FAO Riego y Drenaje N° 56. https://www.fao.org/3/x0490s/x0490s.pdf
  5. Asnake, D., Alemayehu, M., and Asredie, S. (2023). Growth and tuber yield responses of potato (Solanum tuberosum L.) varieties to seed tuber size in northwest highlands of Ethiopia. Heliyon, 9(3), e14586. doi: 10.1016/j.heliyon.2023.e14586
  6. Azcón-Bieto, J. y Talón M. (2008). Fundamentos de fisiología vegetal 2ªEd. McGraw
  7. Chang, D. C., Jin, Y. I., Nam, J. H., Cheon, C. G., Cho, J. H., Kim, S. J., & Yu, H. S. (2018). Early drought effect on canopy development and tuber growth of potato cultivars with different maturities. Field Crops Research. 215, 156-162. https://doi.org/10.1016/j.fcr.2017.10.008
  8. Deblonde, P. M., & Ledent, J. F. (2001). Effects of moderate drought conditions on green leaf number, stem height, leaf length and tuber yield of potato cultivars. Eur. J. Agron. 14, 31-41. https://doi.org/10.1016/S1161-0301(00)00081-2
  9. Djaman, K., Irmak, S., Koudahe, K., & Allen, S. (2021). Irrigation management in potato (Solanum tuberosum L.) production: A Review. Sustainability, 13(3), 1504. http://dx.doi.org/10.3390/su13031504
  10. Ebrahim, S., Mohammed, H., & Ayalew, T. (2018). Effects of seed tuber size on growth and yield performance of potato (Solanum tuberosum L.) varietis under field conditions. African Journal of Agricultural Research, 13(39), 2077-2086. https://doi.org/10.5897/AJAR2018.13405
  11. Eiasu, B. K., Soundy, P., & Hammes, P. S. (2007). Response of potato (Solarium tuberosum) tuber yield components to gel-polymer soil amendments and irrigation regimes. N. Z. J. Crop Hortic. Sci. 35, 25-31. doi:10.1080/01140670709510164
  12. FAOSTAT. (2020) Production and Trade Statistics. Available online: http://www.fao.org/faostat/en/#data/QC/ visualize (accessed on 28 February 2020).
  13. Hajjar, G., Quellec, S., Challois, S., Bousset-Vaslin, L., Joly, G., Langrume, C., Deleu, C., Leport, L., and Musse, M. (2022). Characterization of the water shortage effects on potato tuber tissues during growth using mri relaxometry and biochemical parameters. Plants, 11(15), 1918. https://doi.org/10.3390/plants11151918
  14. Handayani, T., Gilani, S. A., & Watanabe, K. N. (2019). Climatic changes and potatoes: How can we cope with the abiotic stresses?. Breeding science, 69(4), 545-563. https://doi.org/10.1270/jsbbs.19070
  15. Hill, D., Nelson, D., Hammond, J., and Bell, L. (2021). Morphophysiology of potato (Solanum tuberosum) in response to drought stress: Paving the way forward. Front. Plant Sci. 11, 597554. doi: 10.3389/fpls.2020.597554
  16. Ierna, A., and Mauromicale, G. (2018). Potato growth, yield and water productivity response to different irrigation and fertilization regimes. Agricultural Water Management. 201, 21-26. https://doi.org/10.1016/j.agwat.2018.01.008
  17. Instituto Nacional de Innovación-INIA. (2012). Catálogo de nuevas variedades de papa: sabores y colores para el gusto peruano. Perú. doi: 10.4160/978-92-9060-41 9 – 8
  18. Jama-Rodzenska, A., Janik, G., Walczak, A., Adamczewska-Sowinska, K., and Sowinski, J. (2021). Tuber yield and water efficiency of early potato varieties (Solanum tuberosum L.) cultivated under various irrigation levels. Sci. Rep. 11, 19121. doi:10.1038/s41598-021-97899-9
  19. Jefferies, R. A. (1995). Physiology of crop response to drought. In Potato Ecology and Modelling of Crops under Conditions Limiting Growth; Springer: Berlin/Heidelberg, Germany.
  20. Joshi, M., Fogelman, E., Belausov, E., and Ginzberg, I. (2016). Potato root system development and factors that determine its architecture. J. Plant Physiol. 205,113-123. https://doi.org/10.1016/j.jplph.2016.08.014
  21. Lahlou, O., Ouattar, S., and Ledent, J. F. (2003). The effect of drought and cultivar on growth parameters, yield and yield components of potato. Agronomie, 23, 257-268. doi: 10.1051/agro:2002089
  22. Li, Y., Li, H., Li, Y. and Zhang, S. (2017). Improving water use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought resistant wheat. Crop Journal. 5, 231-239. https://doi.org/10.1016/j.cj.2017.01.001
  23. López-Olivari, R., & Zúñiga, M. (2019). Manejo del agua de riego en el cultivo de papa. En Mendez, P. (2019). Producción de Papa para el Convenio Tranapuente (pp.202). Instituto de Investigaciones Agropecuarias Centro Regional de Investigación, INIA Carillanca. Luitel, B.
  24. P., Khatri, B. B., Choudhary, D., Paudel, B. P., Jung-Sook, S., Hur, O., Baek, H. J., Cheol, K. H. and Yul, R. K. (2015). Growth and yield characters of potato genotypes grown in drought and irrigated conditions of Nepal. Int. J. Appl. Sci. Biotechnol. 3(3), 513-519. doi:10.3126/ijasbt.v3i3.13347
  25. Ministerio de Desarrollo Agrario y Riego-MIDAGRI. (2023). Observatorio de las siembras y perspectivas de la producción de papa. Dirección General de Políticas Agrarias-DGPA. Lima.
  26. Ministerio de Agricultura y Riego-MIDAGRI (2017). Papa INIA 326 - Shulay. Instituto Nacional de Innovación Agraria. Lima, Perú.
  27. Ministerio de Agricultura y Riego-MIDAGRI (2012). Papa INIA 303 - Canchan. Instituto Nacional de Innovación Agraria. Lima, Perú.
  28. Nasir, M. W., & Toth, Z. (2022). Effect of drought stress on potato production: A Review. Agronomy, 12(3), 635. https://doi.org/10.3390/agronomy12030635
  29. Navarre, D.A., Goyer, A., & Shakya, R. (2009). Nutritional value of potatoes: vitamin, phytonutrient, and mineral content. In Advances in Potato Chemistry and Technology; Elsevier: Amsterdam, The Netherlands. pp. 395-424.
  30. Obidiegwu, J. E., Bryan, G. J., Jones, H. G., Prashar, A. (2015). Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Front. Plant Sci. 6, 542. doi:10.3389/fpls.2015.00542
  31. Raymundo, R., Asseng, S., Robertson, R., Petsakos, R., Hoogenboom, G., Quiroz, R., Hareau, G., and Wolf, J. (2018). Climate change impact on global potato production. European Journal of Agronomy, 100, 87-98. https://doi.org/10.1016/j.eja.2017.11.008.
  32. Universidad Nacional Agraria La Molina- UNALM. (2021). La papa Yungay: 50 años de creación genética por la UNALM. Gaceta Molinera. UNALM. Lima. http://www.lamolina.edu.pe/Gaceta/edicion2021/notas/nota048.htm
  33. Wishart, J., George, T. S., Brown, L. K., White, P. J., Ramsay, G., Jones, H. and Gregory, P. J. (2014). Field phenotyping of potato to assess root and shoot characteristics associated with drought tolerance. Plant Soil, 378(1/2), 351-363. doi: 10.1007/s11104-014-2029-5
  34. Zwieniecki, M. A., Thompson, M. V. & Holbrook, N. M. (2002). Understanding the hydraulics of porous pipes: Tradeoffs between water uptake and root length utilization. J. Plant Growth Regul. 21, 315-323. doi: 10.1007/s00344-003-0008-9