Vol. 24 Núm. 3 (2022)
Artículo original

Efectos en los ecosistemas por presencia de metales pesados en la actividad minera de pequeña escala en Puno

Hector Humberto Novoa Villa
Facultad de Ciencias Contables y Administrativas, Universidad Nacional del Altiplano Puno-Perú
Américo Arizaca Ávalos
Facultad de Ingeniera de Minas, Universidad Nacional del Altiplano Puno-Perú
Fidel Huisa Mamani
Facultad de Ingeniera de Minas, Universidad Nacional del Altiplano Puno-Perú

Publicado 2022-08-25

Palabras clave

  • Calidad de agua, impacto ambiental, industria minera, mercurio

Cómo citar

Novoa Villa, H. H., Arizaca Ávalos, A., & Huisa Mamani, F. (2022). Efectos en los ecosistemas por presencia de metales pesados en la actividad minera de pequeña escala en Puno. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 24(3), 182-189. https://doi.org/10.18271/ria.2022.361

Resumen

La minería de pequeña escala crece cada vez con mayor número de operadores en diferentes partes de mundo. La región Puno, en Perú, no escapa a esta tendencia; colateralmente los impactos negativos en los ecosistemas son cada vez mayores. El objetivo del estudio es determinar la presencia de metales pesados producidos por la actividad minera artesanal en las provincias de Sandia, Carabaya y San Antonio de Putina. Se tomaron siete muestras puntuales de agua próximas a las operaciones de las tres provincias, muestras que fueron evaluadas en un equipo de espectrometría de plasma (ICP); y diez muestras en el centro poblado de La Rinconada analizadas en un equipo Milestone DM 80 exclusivo para análisis de mercurio. En el primer grupo se presentaron aluminio (Al) en rangos de 7,79 hasta 66,2 mg/L; cromo (Cr) con una muestra con 0,12 mg/L; hierro (Fe) con rangos de 36,1 a 280 mg/L; mercurio (Hg) con rangos de 0,0158 a 0,1301 mg/L; manganeso (Mn) variando de 0,4004 a 6,5092 mg/L y níquel (Ni) con valores entre 0,2278 y 1,2148 mg/L. De seis muestras cinco presentan metales que superan los estándares de calidad ambiental para riego y bebida de animales. En La Rinconada, donde operan más de 400 contratistas que conviven con alrededor de 30,000 personas, los análisis arrojaron resultados que varían entre 0,0013 y 0,0188 mg/l para mercurio, superiores a los permisibles de acuerdo con la norma nacional e internacional.

Referencias

  1. ANA. (2011). Resolución Jefatural Nº 182-2011-ANA. Protocolo Nacional de Monitoreo de la Calidad en Cuerpos Naturales de Agua Superficial. Autoridad Nacional del Agua [en línea]. https://www.ana.gob.pe/normatividad/rj-no-182-2011-ana-0 13/10/2014.
  2. Ang, M. L. E., Arts, D., Crawford, D., Labatos Jr, B. V., Ngo, K. D., Owen, J. R., . . . Lechner, A. M. (2021). Socio-environmental land cover time-series analysis of mining landscapes using Google Earth Engine and web-based mapping. Remote Sensing Applications: Society and Environment, 21, 100458. https://doi.org/10.1016/j.rsase.2020.100458
  3. Appleton, J. D., Williams, T. M., Breward, N., Apostol, A., Miguel, J., & Miranda, C. (1999). Mercury contamination associated with artisanal gold mining on the island of Mindanao, the Philippines. Science of The Total Environment, 228(2–3), 95-109. http://dx.doi.org/10.1016/S0048-9697(99)00016-9
  4. Attiogbe, F., & Nkansah, A. (2017). The impact of mining on the water resources in Ghana: Newmont case study at Birim north district (new abirem). Energy Environ. Res, 7(2), 27-36. DOI: 10.5539/eer.v7n2p27
  5. Attiogbe, F. K., Mohammed, A. R., & Kingslove, Q. (2020). Assessing the potential health impact of selected heavy metals that pollute lake amponsah in Bibiani, Western North region, Ghana. Scientific African, 9, e00531. https://doi.org/10.1016/j.sciaf.2020.e00531
  6. Budnik, L. T., & Casteleyn, L. (2019). Mercury pollution in modern times and its socio-medical consequences. Science of The Total Environment, 654, 720-734. https://doi.org/10.1016/j.scitotenv.2018.10.408
  7. Calao, R. C., Bravo, A. G., Paternina, U. R., Marrugo, N. J., & Díez, S. (2021). Occupational human exposure to mercury in artisanal small-scale gold mining communities of Colombia. Environment International, 146, 106216. https://doi.org/10.1016/j.envint.2020.106216
  8. Chen, X., Zheng, L., Sun, R., Liu, S., Li, C., Chen, Y., & Xu, Y. (2022). Mercury in sediment reflecting the intensive coal mining activities: Evidence from stable mercury isotopes and Bayesian mixing model analysis. Ecotoxicology and Environmental Safety, 234, 113392. https://doi.org/10.1016/j.ecoenv.2022.113392
  9. Cuya, A., Glikman, J. A., Groenendijk, J., Macdonald, D. W., Swaisgood, R. R., & Barocas, A. (2021). Socio-environmental perceptions and barriers to conservation engagement among artisanal small-scale gold mining communities in Southeastern Peru. Global Ecology and Conservation, 31, e01816. https://doi.org/10.1016/j.gecco.2021.e01816
  10. Davies, G. R. (2014). A toxic free future: Is there a role for alternatives to mercury in small-scale gold mining? Futures, 62, Part A, 113-119. http://dx.doi.org/10.1016/j.futures.2013.11.004
  11. Gyamfi, O., Sørensen, P. B., Darko, G., Ansah, E., Vorkamp, K., & Bak, J. L. (2021). Contamination, exposure and risk assessment of mercury in the soils of an artisanal gold mining community in Ghana. Chemosphere, 267, 128910. https://doi.org/10.1016/j.chemosphere.2020.128910
  12. Loza, d. C. A. L., & Ccancapa, S. Y. (2020). Mercurio en un arroyo altoandino con alto impacto por minería aurífera artesanal (La Rinconada, Puno, Perú). Revista internacional de contaminación ambiental, 36(1), 33-44. https://doi.org/10.20937/rica.2020.36.53317
  13. Marimuthu, R., Sankaranarayanan, B., Ali, S. M., Jabbour, A. B. L. d. S., & Karuppiah, K. (2021). Assessment of key socio-economic and environmental challenges in the mining industry: Implications for resource policies in emerging economies. Sustainable Production and Consumption, 27, 814-830. https://doi.org/10.1016/j.spc.2021.02.005
  14. Moher, P. (2020). Health and Artisanal Gold Mining, Human and Ecosystem Health. https://www.artisanalgold.org/publications/articles/health-and-artisanal-gold-mining/Artisanal
  15. Niane, B., Guédron, S., Feder, F., Legros, S., Ngom, P. M., & Moritz, R. (2019). Impact of recent artisanal small-scale gold mining in Senegal: Mercury and methylmercury contamination of terrestrial and aquatic ecosystems. Science of The Total Environment, 669, 185-193. https://doi.org/10.1016/j.scitotenv.2019.03.108
  16. Obiri, Y. A., Nyantakyi, E. K., Mohammed, A. R., Yeboah, S. I. I. K., Domfeh, M. K., & Abokyi, E. (2021). Assessing potential health effect of lead and mercury and the impact of illegal mining activities in the Bonsa river, Tarkwa Nsuaem, Ghana. Scientific African, 13, e00876. https://doi.org/10.1016/j.sciaf.2021.e00876
  17. Ofosu, G., Dittmann, A., Sarpong, D., & Botchie, D. (2020). Socio-economic and environmental implications of Artisanal and Small-scale Mining (ASM) on agriculture and livelihoods. Environmental Science & Policy, 106, 210-220. https://doi.org/10.1016/j.envsci.2020.02.005
  18. Ottenbros, I. B., Boerleider, R. Z., Jubitana, B., Roeleveld, N., & Scheepers, P. T. J. (2019). Knowledge and awareness of health effects related to the use of mercury in artisanal and small-scale gold mining in Suriname. Environment International, 122, 142-150. https://doi.org/10.1016/j.envint.2018.10.059
  19. Owusu, O., Bansah, K. J., & Mensah, A. K. (2019). “Small in size, but big in impact”: Socio-environmental reforms for sustainable artisanal and small-scale mining. Journal of Sustainable Mining, 18(1), 38-44. https://doi.org/10.1016/j.jsm.2019.02.001
  20. Rosales, R. J. A., Malca, E. N., Alarcón, J. J., Chávez, M., & Gonzáles, M. A. (2013). Daño genotóxico en trabajadores de minería artesanal expuestos al mercurio. Revista Peruana de Medicina Experimental y Salud Pública, 30, 595-600. http://www.scielosp.org/scielo.php?script=sci_arttext&pid=S1726-46342013000400009&nrm=iso
  21. Salazar, C. C., Salas, M. M., Paternina, U. R., Marrugo, N. J., & Díez, S. (2020). Dataset of concentrations of mercury and methylmercury in fish from a tropical river impacted by gold mining in the Colombian Pacific. Data in Brief, 33, 106513. https://doi.org/10.1016/j.dib.2020.106513
  22. Saldaña, V. K., Pérez, V. F. J., Ávila, G. I. P., Méndez, R. K. B., Carrizalez, Y. L., Gavilán, G. A., . . . Diaz, B. F. (2022). A preliminary study on health impacts of Mexican mercury mining workers in a context of precarious employment. Journal of Trace Elements in Medicine and Biology, 71, 126925. https://doi.org/10.1016/j.jtemb.2022.126925
  23. Sánchez-Vázquez, L., Espinosa-Quezada, M. G., & Eguiguren-Riofrío, M. B. (2016). “Golden reality” or the “reality of gold”: Artisanal mining and socio-environmental conflict in Chinapintza, Ecuador. The Extractive Industries and Society, 3(1), 124-128. https://doi.org/10.1016/j.exis.2015.11.004
  24. Siddiqui, E., & Pandey, J. (2019). Assessment of heavy metal pollution in water and surface sediment and evaluation of ecological risks associated with sediment contamination in the Ganga River: a basin-scale study. Environmental Science and Pollution Research, 26(11), 10926-10940. https://doi.org/10.1007/s11356-019-04495-6
  25. Spiegel, S. (2016). Land and ‘space’ for regulating artisanal mining in Cambodia: Visualizing an environmental governance conundrum in contested territory. Land Use Policy, 54, 559-573. http://dx.doi.org/10.1016/j.landusepol.2016.03.015
  26. Wen, J., Wu, Y., Li, X., Lu, Q., Luo, Y., Duan, Z., & Li, C. (2021). Migration characteristics of heavy metals in the weathering process of exposed argillaceous sandstone in a mercury-thallium mining area. Ecotoxicology and Environmental Safety, 208, 111751. https://doi.org/10.1016/j.ecoenv.2020.111751
  27. Yevugah, L. L., Darko, G., & Bak, J. (2021). Does mercury emission from small-scale gold mining cause widespread soil pollution in Ghana? Environmental Pollution, 284, 116945. https://doi.org/10.1016/j.envpol.2021.116945