Vol. 22 Núm. 2 (2020)
Artículo original

Calidad estacionaria del agua ante el costo ambiental sostenible relativo con agregación de biomarcadores: Bahía de Puno, lago Titicaca, Perú

George Argota Pérez
Centro de Investigaciones Avanzadas y Formación Superior en Educación, Salud y Medio Ambiente AMTAWI, Puno, Perú
Fortunato Escobar-Mamani
Vicerrectorado de Investigación, Universidad Nacional del Altiplano de Puno, Perú
Edmundo G. Moreno Terrazas
Facultad de Biología, Universidad Nacional del Altiplano de Puno, Perú

Publicado 2020-05-30

Palabras clave

  • bioevaluación,
  • calidad de agua,
  • parámetros físico-químicos,
  • predicción,
  • toxicidad

Cómo citar

Argota Pérez, G., Escobar-Mamani, F., & Moreno Terrazas, E. G. (2020). Calidad estacionaria del agua ante el costo ambiental sostenible relativo con agregación de biomarcadores: Bahía de Puno, lago Titicaca, Perú. Revista De Investigaciones Altoandinas, 22(2), 146–154. https://doi.org/10.18271/ria.2020.602

Resumen

La contaminación de la bahía interior del Lago Titicaca es una de las preocupaciones ambientales sobre el ecosistema donde la búsqueda de nuevas evaluaciones para la toma de decisiones resulta un desafío científico. El propósito del estudio fue evaluar la calidad estacionaria del agua según el costo ambiental sostenible relativo con agregación de biomarcadores en la bahía de Puno, Lago Titicaca, Perú. En la zona de proximidad a la descarga de efluentes por la laguna de oxidación de Espinar (15°51.073 / 69"59.729 a una profundidad de 1,8 m) se midió el oxígeno disuelto, pH, sólidos totales disueltos, conductividad eléctrica, Cu+, Zn+, Pb+, Fe+, Cd+, Al+, Cl-, NO3 - y NO2 -. Asimismo, se evaluó la concentración letal media (CL50) en la especie Gambusia punctata (Poey, 1854). Con todas las mediciones se determinó, el costo ambiental sostenible relativo con agregación de biomarcadores (COASORbiom). El oxígeno disuelto y los sólidos totales disueltos fueron los parámetros físico-químicos que no cumplieron con el límite máximo permisible conjuntamente con el Cu+, Zn+, Cd+ y Al+ según el Decreto Supremo No. 004-2017-MINAM. Se observó, sensibilidad tóxica letal a bajas concentraciones y en corto periodo de tiempo (5:00 h) en la G. punctata. El COASORbiom que se estimó fue de 0,54 significando ser clasificado en la categoría de recurso no sostenible relativo. Se concluyó que, la zona de muestreo próxima a laguna de oxidación de Espinar en la bahía de Puno, presentó contaminación de la columna de agua existiendo elevada probabilidad de efectos ambientales negativos requiriéndose, el tratamiento eficiente de los efluentes que se descargan.

Citas

  1. AbdAllah, A.T. (2017). Efficiency of invertebrate animals for risk assessment and biomonitoring of hazardous contaminants in aquatic ecosystem, a review and status report. Environmental Risk Assessment and Remediation Journal; 1, 22–24. Doi: 10.4066/2529-8046.10003
  2. Aguirre, P.J.; Rodríguez, B.J. & Ospina, T.R. (2012). Deriva de macroinvertebrados acuáticos en dos sitios con diferente grado de perturbación, Río Gaira, Santa Marta-Colombia. Intropica; 7, 9–19.
  3. Argota, P.G. & Iannacone, O.J. (2014a). Problemas sociales de la ciencia con los biomonitores en ecotoxicología ambiental acuática. The Biologist (Lima); 12, 335–347. Doi: 10.24039/rtb2014122379
  4. Argota, P.G. & Iannacone, O.J. (2017). Predicción cuantitativa mediante biomarcadores de uso permanente como nuevo criterio para biomonitores en ecotoxicología acuática. The Biologist (Lima); 17, 141–153. Doi: 10.24039/rtb2017151150
  5. Argota, P.G. (2015). Aplicación Gecotoxic para predicción de riesgo ambiental: caso estudio sobre mortandad de peces en la bahía interior del Lago Titicaca, Puno-Perú. Campus; 20(20); 11–19.
  6. Argota, P.G., Iannacone, O.J. & Fimia, D.R. (2013). Características de Gambusia punctata (Poeciliidae) para su selección como biomonitor en ecotoxicología acuática en Cuba. The Biologist (Lima); 11(2), 229–236.
  7. Argota, P.G., Moreno, T.E.G. & Iannacone, O. (2019). Costo ambiental sostenible relativo con agregación de biomarcadores para la estimación de la calidad ambiental en ecosistemas acuáticos. The Biologist (Lima); 17(2), 295–305. Doi: 10.24039/rtb2019172365
  8. Argota, P.G.; Argota, C.H. & Iannacone, O.J. (2016). Costo ambiental sostenible relativo a la variabilidad físico-química de las aguas sobre la disponibilidad de metales en el ecosistema San Juan, Santiago de Cuba-Cuba. The Biologist (Lima), 14, 219–232. Doi: 10.24039/rtb2019172365
  9. Bilotta, G.S. & Brazier, R.E. (2008). Understanding the influence of suspended solids on water quality and aquatic biota. Water Res; 42, 2849–2861. Doi: 10.1016/j.watres. 2008.03.018
  10. Briscoe, J. (2015). Water security in a changing world. Daedalus; 144, 27–34. Doi: 10.1162/DAED_a_00339
  11. Byappanahalli, M.N., Nevers, M.B., Korajkic, A., Staley, Z.R. & Harwood, V.J. (2012). Enterococci in the environment. Microbiol. Mol. Biol. Rev; 76, 685–706. Doi: 10.1128/MMBR.00023-12
  12. Çiftçi, N.; Ay, Ö.; Karayakar, F.; Cicik, B. & Erdem, C. (2015). Effects of zinc and cadmium on condition factor, hepatosomatic and gonadosomatic index of Oreochromis niloticus. Fresenius Environmental Bulletin; 24, 3871–3874.
  13. Collins, A.L., Naden, P.S., Sear, D.A., Jones, J.I., Foster, I.D.L. & Morrow, K. (2011). Sediment targets for informing river catchment management: international experience and prospects. Hydrological Processes; 25, 2112–2129. Doi: 10.1002/hyp.7965
  14. Comisión Económica para América Latina y el Caribe: CEPAL (2015). Guía metodológica Medición del gasto en protección ambiental del gobierno general. II. Conceptos y definiciones generales para la medición del gasto en protección ambiental. Pp 17–18.
  15. Correa, R.G., Cuervo, F.H., Mejía, R.R. & Aguirre, N. (2012). Monitoreo del sistema de lagunas de estabilización del municipio de Santa Fé de Antioquia, Colombia. Producción + Limpia; 7(2), 36–51.
  16. Cui, B., He, Q., Gu, B., Bai, J. & Liu, X. (2016). China’s coastal wetlands: understanding environmental changes and human impacts for management and conservation. Wetlands; 36, 1–9. Doi: 10.1007/s13157-016-0737-8
  17. Dakoli, H. (2007). Hidrogjeologjia (pjesa I), UP-FGJM. Tiranë; 111–174.
  18. Dimitrakopoulos, P.G. & Troumbis, A.Y. (2019). Biotopos. Enciclopedia de la ecología; 359–365. Doi: 10.1016/b978-0-12-409548-9.10923-6
  19. Dixit, R.; Wasiullah, Malaviya, D.; Pandiyan, K.; Singh, U.B.; Sahu, A.; Shuka, R.; Singh, B.P.; Rai, J.P.; Kumar, S.P.; Lade, H. & Paul, D. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability (Switzerland); 7, 2189–2212. Doi: 10.3390/su7022189
  20. Elleuch, B., Bouhamed, F., Elloussaief, M., Jaghbir, M. (2018). Environmental sustainability and pollution prevention. Environ. Sci. Pollut. Res; 25, 18223–18225. Doi: 10.1007/s11356-017-0619-5
  21. Fischer, K.I. (2018). How people value biodiversity in urban landscapes: assessing the people-nature interaction in cities.
  22. Hahmenberger, M. (2003). Summertime precipitation variability and atmospheric circulation over the south American Altiplano: Effects of lake Titicaca and salar de Uyuni. Oklahoma Weather Center Research Experiences for Undergraduates Program, Summer. Pp. 10
  23. Hamza, C.A. (2014). Usefulness of bioindicators and biomarkers in pollution biomonitoring. International Journal of Biotechnology for Wellness Industries; 3: 19–26.
  24. Hartig, T., Mitchell, R., de Vries, S. & Frumkin, H. (2014). Nature and Health. Annual Review of Public Health; 35(1), 207–228. Doi: 10.1146/annurev-publhealth-032013-182443
  25. He, J., Zhang, H., Zhang, H., Guo, X., Song, M., Zhang, J. & Li, X. (2014). Ecological risk and economic loss estimation of heavy metals pollution in the Beijiang River. Ecological Chemistry and Engineering; 21, 189–199. Doi: 10.2478/eces-2014-0015
  26. Kumari, P. & Maiti, S.K. (2019). Health risk assessment of lead, mercury, and other metal (loid) s: A potential threat to the population consuming fish inhabiting, a lentic ecosystem in Steel City (Jamshedpur), India. Human and Ecological Risk Assessment; 25(8), 2174–2192. Doi: 10.1080/10807039.2018.1495055
  27. Lachowycz, K. & Jones, A.P. (2013). Towards a better understanding of the relationship between greenspace and health: development of a theoretical framework. Landscape Urban Plann; 118, 62–69. Doi: 10.1016/j.landurbplan.2012.10.012
  28. Li, D., Erickson, R.A., Tang, S., Zhang, Y., Niu, Z., Liu, H. & Yu, H. (2016). Structure and spatial patterns of macrobenthic community in Tai Lake, a large shallow lake, China. Indicadores Ecológicos; 61, 179–187. Doi: 10.1016/j.ecolind.2017.03.040
  29. Luo, K., Hu, X., He, Q., Wu, Z., Cheng, H., Hu, Z. & Mazumder, A. (2018). Impacts of rapid urbanization on the water quality and macroinvertebrate communities of streams: a case study in Liangjiang New Area. China. Science of the Total Environment; 621, 1601–1614. Doi: 10.1016/j.scitotenv.2017.10.068
  30. Mazón, M. (2016). Taking shortcuts to measure species diversity: parasitoid Hymenoptera subfamilies as surrogates of species richness. Biodiversity Conservation; 25, 67–76.
  31. Paredes, M. & Goniantini, G. (1999). Lake Titicaca: historian and current studies. Water and Environment News. International Atomic Energy Agency. Quarterly (8/9), 6–8.
  32. Pearce, D.W. & Turner, R.K. (1990). Economics of natural resources and the environment. American Journal of Agricultural Economics; 73(1), 211–218. Doi: 10.2307/1242904
  33. Quinteiro, P.S.G.N. (2015). Environmental impacts of freshwater use and suspended solids in life cycle assessment (Ph.D. thesis). Universidade de Aveiro, Portugal. Disponible en: https://core.ac.uk/download/pdf/43419436.pdf
  34. Revenga, C., Brunner, J., Henninger, N., Kassem, K. & Payne, R. (2000). Pilot analysis of global ecosystems: Freshwater systems. World Resources Institute, Washington, DC
  35. Shah, DH, Zhou, X., Kim, H.-Y., Call, DR y Guard, J. (2012). Transposon mutagenesis of Salmonella Enteritidis identifies genes that contribute to invasiveness in human and chicken cells and survival in egg albumen. Infection and Immunity; 80(12), 4203–4215. Doi: 10.1128/iai.00790-12
  36. Shortle, J. (2013). Economic and Environmental markets: Lessons from Water-quality trading. Agricultural and Resource Economics Review; 42, 57–74. Doi: 10.1017/S1068280500007619
  37. Stefanidis, K., Panagopoulos, Y. & Mimikou, M. (2016). Impact assessment of agricultural driven stressors on benthic macroinvertebrates using simulated data. Science of the Total Environment; 540, 32–42. Doi: 10.1016/j.scitotenv.2015.08.015
  38. Suzuki, J., Imamura, M., Nakano, D., Yamamoto, R. & Fujita, M. (2018). Effects of water turbidity and different temperatures on oxidative stress in caddisfly (Stenopsyche marmorata) larvae. Science of the Total Environment; 630, 1078–1085. Doi: 10.1016/j.scitotenv. 2018.02.286
  39. Veas, A.N., Hidalgo, H., Quesada, R.A. & Alfaro, E. (2018). Humedales del Parque Nacional Chirripó, Costa Rica: características, relaciones geomorfológicas y escenarios de cambio climático. Revista de Biología Tropical; 64(4), 1436–1448. Doi: 10.15517/rbt.v66i4.31477
  40. Veliz, E., Llanes, J., Asela, L. & Batallar, M. (2007). Reúso de las aguas domésticas para riego agrícola. Valoración crítica. Revista CENIC Ciencias Biológicas; 40(1), 35–44.
  41. Wang, X. & Zang, S. (2014). Distribution characteristics and ecological risk assessment of toxic heavy metals and metalloid in surface water of lakes in Daqing Heilonjiang Province, China. Ecotoxicology; 23, 609–617. Doi: 10.1007/s10646-014-1177-y
  42. Young, P., Buchanan, N. & Fallowfield, H.J. (2016). Inactivation of indicator organisms in wastewater treated by a high rate algal pond system. Journal of Applied Microbiology; 121, 577–586. Doi: 10.1111/jam.13180
  43. Zhang, W.; Liu, Y.; Xu, Y. & Xu, H. (2015). Insights into assessing environmental quality status using potential surrogates of biofilm-dwelling ciliate fauna in coastal waters. Enviromental Science Pollution Research; 22: 1389–1398. Doi: 10.1007/s11356-014-3436-0