Publicado 2018-04-27
Palabras clave
- Toxicología,
- contaminante emergente,
- agua
Cómo citar
Resumen
Debido a su amplio uso en diversas actividades de producción de ganado y su uso en el cuidado de la salud humana, los antibióticos, se han convertido en un problema ambiental que llama la atención de la comunidad científica. Diversos trabajos reportan su presencia en diversos compartimientos de los ecosistemas, así como su impacto a los organismos que habitan estos ecosistemas se encuentran siendo investigados por esta comunidad, hasta el momento se han reportado problemas de resistencia bacteriana y daños a nivel de ADN en seres vivos, entre otros, por lo que, se hace necesario realizar el monitoreo en diversas matrices ambientales, con el fin de detectar y cuantificar su presencia, para tener un mejor conocimiento de su efectos a largo plazo en seres vivos. En ese sentido, se abordan aspectos que determinan su presencia en el ecosistema, así como se muestra resultados de trabajos que evalúan su remoción de aguas contaminadas, con el fin de garantizar su seguridad desde una perspectiva ambiental y llevando en consideración la salud de seres vivos y del mismo ser humano.
Referencias
- Aminov, R. I. (2010). A brief history of the antibiotic era: Lessons learned and challenges for the future. Frontiers in Microbiology, 1(DEC), 1–7. doi:10.3389/fmicb.2010.00134
- ANA. (2016). Protocolo Nacional para el Monitoreo de la Calidad de los Recursos Hídricos Superficiales.
- Archer, E., Petrie, B., Kasprzyk-Hordern, B., & Wolfaardt, G. M. (2017). The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters. Chemosphere, 174, 437–446.doi:10.1016/j.chemosphere.2017.01.101
- Baquero, F., Martínez, J. L., & Cantón, R. (2008). Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology, 19(3), 260–265. doi:10.1016/j.copbio.2008.05.006
- Barba-Álvarez, R., De La Lanza-Espino, G., Contreras-Ramos, A., & González-Mora, I. (2013). Insectos acuáticos indicadores de calidad del agua en México: Casos de estudio, ríos Copalita, Zimatán y Coyula, Oaxaca. Revista Mexicana de Biodiversidad, 84(1), 381–383. doi:10.7550/rmb.31037
- Batt, A. L., Bruce, I. B., & Aga, D. S. (2006). Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges. Environmental Pollution, 142(2), 295–302. doi:10.1016/j.envpol.2005.10.010
- Bergeron, S., Boopathy, R., Nathaniel, R., Corbin, A., & LaFleur, G. (2015). Presence of antibiotic resistant bacteria and antibiotic resistance genes in raw source water and treated drinking water. International Biodeterioration and Biodegradation, 102, 370–374.doi:10.1016/j.ibiod.2015.04.017
- Boxall, A. B. A., Fogg, L. A., Kay, P., Blackwell, P. A., Pemberton, E. J., & Croxford, A. (2003). Prioritisation of veterinary medicines in the UK environment. Toxicology Letters, 142(3), 207–218. doi:10.1016/S0378-4274(03)00067-5
- Bundschuh, M., Hahn, T., Ehrlich, B., Höltge, S., Kreuzig, R., & Schulz, R. (2016). Acute Toxicity and Environmental Risks of Five Veterinary Pharmaceuticals for Aquatic Macroinvertebrates. Bulletin of Environmental Contamination and Toxicology, 96(2), 139–143. doi:10.1007/s00128-015-1656-8
- Butkovskyi, A., Hernandez Leal, L., Rijnaarts, H. H. M., & Zeeman, G. (2015). Fate of pharmaceuticals in full-scale source separated sanitation system. Water Research, 85, 384–392. doi:10.1016/j.watres.2015.08.045
- Byaruhanga, J., Tayebwa, D. S., Eneku, W., Afayoa, M., Mutebi, F., Ndyanabo, S., … Vudriko, P. (2017). Retrospective study on cattle and poultry diseases in Uganda. International Journal of Veterinary Science and Medicine. doi:10.1016/j.ijvsm.2017.07.001
- Carvalho, I. T., & Santos, L. (2016). Antibiotics in the aquatic environments: A review of the European scenario. Environment International. Elsevier Ltd. doi:10.1016/j.envint.2016.06.025
- Chen, Q. L., An, X. L., Li, H., Zhu, Y. G., Su, J. Q., & Cui, L. (2017). Do manure-borne or indigenous soil microorganisms influence the spread of antibiotic resistance genes in manured soil? Soil Biology and Biochemistry, 114, 229–237. doi:10.1016/j.soilbio.2017.07.022
- Cui, C., Jin, L., jiang, L., Han, Q., Lin, K., Lu, S., … Cao, G. (2016). Removal of trace level amounts of twelve sulfonamides from drinking water by UV-activated peroxymonosulfate. Science of The Total Environment, 572, 244–251. doi:10.1016/j.scitotenv.2016.07.183
- Cunha, S. C., & Fernandes, J. O. (2010). Development and validation of a method based on a QuEChERS procedure and heart-cutting GC-MS for determination of five mycotoxins in cereal products. Journal of Separation Science, 33(4–5), 600–609. doi:10.1002/jssc.200900695
- Done, H. Y., Venkatesan, A. K., & Halden, R. U. (2015). Does the Recent Growth of Aquaculture Create Antibiotic Resistance Threats Different from those Associated with Land Animal Production in Agriculture? The AAPS Journal, 17(3), 513–524. doi:10.1208/s12248-015-9722-z
- Drogui, R. D. P. (2013). Tetracycline antibiotics in the environment : a review, 209–227. doi:10.1007/s10311-013-0404-8
- Duchene, O., Vian, J. F., & Celette, F. (2017). Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agriculture, Ecosystems and Environment, 240, 148–161. doi:10.1016/j.agee.2017.02.019
- FAO. (2017). Producción pecuaria en América Latina y el Caribe | Oficina Regional de la FAO para América Latina y el Caribe | Organización de las Naciones Unidas para la Alimentación y la Agricultura. Recuperado de http://www.fao.org/americas/perspectivas/produccion-pecuaria/es/
- Fram, M. S., & Belitz, K. (2011). Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California. Science of the Total Environment, 409(18), 3409–3417. doi:10.1016/j.scitotenv.2011.05.053
- Grenni, P., Ancona, V., & Barra Caracciolo, A. (2017). Ecological effects of antibiotics on natural ecosystems: A review. Microchemical Journal. doi:10.1016/j.microc.2017.02.006
- He, X., Xu, Y., Chen, J., Ling, J., Li, Y., Huang, L., Xie, G. (2017). Evolution of corresponding resistance genes in the water of fish tanks with multiple stresses of antibiotics and heavy metals. Water Research, 124, 39–48. doi:10.1016/j.watres.2017.07.048
- Ikehata, K., Jodeiri Naghashkar, N., & Gamal El-Din, M. (2006). Degradation of Aqueous Pharmaceuticals by Ozonation and Advanced Oxidation Processes: A Review. Ozone: Science & Engineering, 28(6), 353–414. doi:10.1080/01919510600985937
- Jechalke, S., Heuer, H., Siemens, J., Amelung, W., & Smalla, K. (2014). Fate and effects of veterinary antibiotics in soil. Trends in Microbiology, 22(9), 536–545. doi:10.1016/j.tim.2014.05.005
- Jiang, H., Zhou, R., Yang, Y., Chen, B., & Cheng, Z. (2017). Characterizing the antibiotic resistance genes in a river catchment: Influence of anthropogenic activities. Journal of Environmental Sciences, 1–8. doi:10.1016/j.jes.2017.08.009
- Kim, H. Y., Lee, I. S., & Oh, J. E. (2017). Human and veterinary pharmaceuticals in the marine environment including fish farms in Korea. Science of the Total Environment, 579, 940–949. doi:10.1016/j.scitotenv.2016.10.039
- Klatte, S., Schaefer, H. C., & Hempel, M. (2017). Pharmaceuticals in the environment – A short review on options to minimize the exposure of humans, animals and ecosystems. Sustainable Chemistry and Pharmacy, 5, 61–66. doi:10.1016/j.scp.2016.07.001
- Koba, O., Golovko, O., Kodešová, R., Fér, M., & Grabic, R. (2017). Antibiotics degradation in soil: A case of clindamycin, trimethoprim, sulfamethoxazole and their transformation products. Environmental Pollution, 220, 1251–1263. doi:10.1016/j.envpol.2016.11.007
- Kümmerer, K. (2009). The presence of pharmaceuticals in the environment due to human use - present knowledge and future challenges. Journal of Environmental Management, 90(8), 2354–2366. doi:10.1016/j.jenvman.2009.01.023
- Le-Minh, N., Khan, S. J., Drewes, J. E., & Stuetz, R. M. (2010). Fate of antibiotics during municipal water recycling treatment processes. Water Research, 44(15), 4295–4323. doi:10.1016/j.watres.2010.06.020
- Li, Jianan, Cheng, Weixiao, Xu, Like, Jiao, Yanan, Ali Baig, Shams, C. H. (2015). Occurrence and removal of antibiotics and the corresponding resistance genes in wastewater treatment plants: effluents’ influence to downstream water environment. Environmental Science Pollution Research, 318, 319–328. doi:10.1016/j.jhazmat.2016.07.021
- Li, C., Chen, J., Wang, J., Ma, Z., Han, P., Luan, Y., & Lu, A. (2015). Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment. Science of the Total Environment, 521–522, 101–107. doi:10.1016/j.scitotenv.2015.03.070
- Liu, S., Zhao, X. rong, Sun, H. yuan, Li, R. ping, Fang, Y. feng, & Huang, Y. ping. (2013). The degradation of tetracycline in a photo-electro-Fenton system. Chemical Engineering Journal, 231, 441–448. doi:10.1016/j.cej.2013.07.057
- Magdaleno, A., Juárez, Á. B., Paz, M., Tornello, C., Núñez, L., & Moretton, J. (2012). Ecotoxicological and genotoxic evaluation of hospital wastewaters. Acta Toxicol{ó}gica Argentina, 20(1), 14–24. Recuperado de http://www.scielo.org.ar/scielo.php?script=sci%7B_%7Darttext%7B&%7Dpid=S1851-37432012000100002%7B&%7Dlng=es%7B&%7Dnrm=iso%7B&%7Dtlng=es
- Martínez-Carballo, E., González-Barreiro, C., Scharf, S., & Gans, O. (2007). Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environmental Pollution, 148(2), 570–579. doi:10.1016/j.envpol.2006.11.035
- Marx, C., Günther, N., Schubert, S., Oertel, R., Ahnert, M., Krebs, P., & Kuehn, V. (2015). Mass flow of antibiotics in a wastewater treatment plant focusing on removal variations due to operational parameters. Science of the Total Environment, 538, 779–788. doi:10.1016/j.scitotenv.2015.08.112
- Molla, W., Frankena, K., Gari, G., & de Jong, M. C. M. (2017). Field study on the use of vaccination to control the occurrence of lumpy skin disease in Ethiopian cattle. Preventive Veterinary Medicine, 147, 34–41. doi:10.1016/j.prevetmed.2017.08.019
- Mudryk, J., Skórczewski, P., Mudryk, Z. J., Jankowska, M., Perli, P., & Zdanowicz, M. (2013). Antibiotic resistance of neustonic and planktonic fecal coliform bacteria isolated from two water basins differing in the level of pollution Resistencia a antibióticos de bacterias coliformes fecales , nesutónicas y planctónicas , aisladas de dos cuerpos, 23(3), 431–439.
- Murphy, E. A., Post, G. B., Buckley, B. T., Lippincott, R. L., & Robson, M. G. (2012). Future Challenges to Protecting Public Health from Drinking-Water Contaminants. Annual Review of Public Health, 33(1), 209–224. doi:10.1146/annurev-publhealth-031811-124506
- Nieto, A., Borrull, F., Marcé, R. M., & Pocurull, E. (2007). Selective extraction of sulfonamides, macrolides and other pharmaceuticals from sewage sludge by pressurized liquid extraction. Journal of Chromatography A, 1174(1–2), 125–131. doi:10.1016/j.chroma.2007.09.068
- Nnadozie, C. F., Kumari, S., & Bux, F. (2017). Status of pathogens, antibiotic resistance genes and antibiotic residues in wastewater treatment systems. Reviews in Environmental Science and Biotechnology, 16(3), 1–25. doi:10.1007/s11157-017-9438-x
- OMS. (2016). OMS | Uso de los antimicrobianos. WHO. Recuperado de http://www.who.int/drugresistance/use/es/
- OMS. (2017). OMS | Las 10 principales causas de defunción. Recuperado de http://www.who.int/mediacentre/factsheets/fs310/es/
- Organización Panamericana de la Salud. (2015). Plan de acción sobre la resistencia a los antimicrobianos antimicrobianos, 1–3.
- Özcan, A., Özcan, A., & Demirci, Y. (2016). Evaluation of mineralization kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment. Chemical Engineering Journal, 304, 518–526. doi:10.1016/j.cej.2016.06.105
- Padilla-Robles, B. G., Alonso, A., Martínez-Delgadillo, S. A., González-Brambila, M., Jaúregui-Haza, U. J., & Ramírez-Muñoz, J. (2015). Electrochemical degradation of amoxicillin in aqueous media. Chemical Engineering and Processing: Process Intensification, 94, 93–98. doi:10.1016/j.cep.2014.12.007
- Pan, M., & Chu, L. M. (2017). Fate of antibiotics in soil and their uptake by edible crops. Science of the Total Environment. doi:10.1016/j.scitotenv.2017.04.214
- Pan, M., & Chu, L. M. (2017). Leaching behavior of veterinary antibiotics in animal manure-applied soils. Science of the Total Environment, 579, 466–473. doi:10.1016/j.scitotenv.2016.11.072
- Pan, M., & Chu, L. M. (2017). Leaching behavior of veterinary antibiotics in animal manure-applied soils. Science of the Total Environment, 579, 466–473. doi:10.1016/j.scitotenv.2016.11.072
- Peña-Álvarez, A., & Castillo-Alanís, A. (2015). Identificación y cuantificación de contaminantes emergentes en aguas residuales por microextracción en fase sólida-cromatografía de gases-espectrometría de masas (MEFS-CG-EM). Tip, 18(1), 29–42.doi:10.1016/j.recqb.2015.05.003
- Poel, I. Van De. (2003). The transformation of technological regimes. Research Policy, 32(1), 49–68. doi:10.1016/S0048-7333(01)00195-0
- Reynaud, S., & Deschaux, P. (2006). The effects of polycyclic aromatic hydrocarbons on the immune system of fish: A review. Aquatic Toxicology, 77(2), 229–238. doi:10.1016/j.aquatox.2005.10.018
- Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M. C. ., Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Science of the Total Environment, 447, 345–360. doi:10.1016/j.scitotenv.2013.01.032
- Santos, L., & Ramos, F. (2016). Analytical strategies for the detection and quantification of antibiotic residues in aquaculture fishes: A review. Trends in Food Science and Technology, 52, 16–30. doi:10.1016/j.tifs.2016.03.015
- Sapkota, A., Sapkota, A. R., Kucharski, M., Burke, J., McKenzie, S., Walker, P., & Lawrence, R. (2008). Aquaculture practices and potential human health risks: Current knowledge and future priorities. Environment International, 34(8), 1215–1226.doi:10.1016/j.envint.2008.04.009
- Shi, W., Yue, T., Du, Z., Wang, Z., & Li, X. (2016). Surface modeling of soil antibiotics. The Science of the Total Environment, 543(Pt A), 609–19. doi:10.1016/j.scitotenv.2015.11.077
- Singer, A. C., Järhult, J. D., Grabic, R., Khan, G. A., Lindberg, R. H., Fedorova, G., … Söderström, H. (2014). Intra- and inter-pandemic variations of antiviral, antibiotics and decongestants in wastewater treatment plants and receiving rivers. PLoS ONE, 9(9).doi:10.1371/journal.pone.0108621
- Sui, Q., Cao, X., Lu, S., Zhao, W., Qiu, Z., & Yu, G. (2015). Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: A review. Emerging Contaminants, 1(1), 14–24. doi:10.1016/j.emcon.2015.07.001
- Tasho, R. P., & Cho, J. Y. (2016). Science of the Total Environment Veterinary antibiotics in animal waste , its distribution in soil and uptake by plants : A review. Science of the Total Environment, 563–564(3), 366–376. doi:10.1016/j.scitotenv.2016.04.140
- Ternes, T. A., Prasse, C., Eversloh, C. L., Knopp, G., Cornel, P., Schulte-Oehlmann, U., Oehlmann, J. (2017). Integrated Evaluation Concept to Assess the Efficacy of Advanced Wastewater Treatment Processes for the Elimination of Micropollutants and Pathogens. Environmental Science and Technology, 51(1), 308–319. doi:10.1021/acs.est.6b04855
- Ternes, T., Joss, A., & Oehlmann, J. (2015). Occurrence, fate, removal and assessment of emerging contaminants in water in the water cycle (from wastewater to drinking water). Water Research, 72, 1–2. doi:10.1016/j.watres.2015.02.055
- Underwood, J. C., Harvey, R. W., Metge, D. W., Repert, D. A., Baumgartner, L. K., Smith, R. L.,Barber, L. B. (2011). Effects of the antimicrobial sulfamethoxazole on groundwater bacterial enrichment. Environmental Science and Technology, 45(7), 3096–3101. doi:10.1021/es103605e
- Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649–5654. doi:10.1073/pnas.1503141112
- van Dijk, L., Hayton, A., Main, D. C. J., Booth, A., King, A., Barrett, D. C., Reyher, K. K. (2017). Participatory Policy Making by Dairy Producers to Reduce Anti-Microbial use on Farms. Zoonoses and Public Health, 64(6), 476–484. doi:10.1111/zph.12329
- Verlicchi, P., Al Aukidy, M., & Zambello, E. (2012). Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment-A review. Science of the Total Environment, 429, 123–155. doi:10.1016/j.scitotenv.2012.04.028
- Villalobos, A. P., Barrero, L. I., Rivera, S. M., Ovalle, M. V., & Valera, D. (2013). Vigilancia de infecciones asociadas a la atención en salud, resistencia bacteriana y consumo de antibióticos en hospitales de alta complejidad, Colombia, 2011. Biomédica, 34(0), 67. doi:10.7705/biomedica.v34i0.1698
- Vo, T. D. H., Bui, X. T., Cao, N. D. T., Luu, V. P., Nguyen, T. T., Dang, B. T., … Dao, T. S. (2016). Investigation of antibiotics in health care wastewater in Ho Chi Minh City, Vietnam. Environmental Monitoring and Assessment, 188(12). doi:10.1007/s10661-016-5704-6
- von Schiller, D., Acuña, V., Aristi, I., Arroita, M., Basaguren, A., Bellin, A., … Elosegi, A. (2017). River ecosystem processes: A synthesis of approaches, criteria of use and sensitivity to environmental stressors. Science of the Total Environment, 596–597(April), 465–480. doi:10.1016/j.scitotenv.2017.04.081
- Werbeloff, L., Brown, R. R., & Loorbach, D. (2016). Pathways of system transformation: Strategic agency to support regime change. Environmental Science and Policy, 66, 119–128. doi:10.1016/j.envsci.2016.08.010
- Zhang, Q., & Dick, W. A. (2014). Growth of soil bacteria, on penicillin and neomycin, not previously exposed to these antibiotics. Science of the Total Environment, 493, 445–453. doi:10.1016/j.scitotenv.2014.05.114
- Zhang, Q. Q., Ying, G. G., Pan, C. G., Liu, Y. S., & Zhao, J. L. (2015). Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environmental Science and Technology, 49(11), 6772–6782. doi:10.1021/acs.est.5b00729
- Zhang, W., Naveena, B. M., Jo, C., Sakata, R., Zhou, G., Banerjee, R., & Nishiumi, T. (2017). Technological demands of meat processing–An Asian perspective. Meat Science, 132, 35–44. doi:10.1016/j.meatsci.2017.05.008