Uso de sensores para modelamiento matemático durante el tostado de granos de cacao (Theobroma cacao) de la variedad Chuncho
Publicado 2022-05-16
Palabras clave
- Sistema concentrado,
- segunda ley de Fourier ,
- sensores tipo K ,
- coeficiente convectivo de transferencia de calor ,
- fusividad térmica.
Cómo citar
Resumen
Simples innovaciones del control de temperatura durante el tostado de cacao pueden ayudar a mejorar la calidad del chocolate elaborado por pequeños empresarios de los valles andino amazónicos del Perú. El objetivo de esta investigación fue evaluar el efecto de la temperatura del horno en la temperatura de granos de cacao (Theobroma cacao) durante el tostado, mediante seis modelos matemáticos. Granos de cacao en las cantidades de 100 y 200 g fueron colocados una bandeja en un horno eléctrico convencional programado a 250 °C. Se introdujo una termocupla tipo K con su respectivo lector en el centro geométrico de un grano de cacao y otro a 5 cm de la superficie. Las lecturas fueron registradas a cada 5 min y ajustados a los modelos matemáticos de Sistema Concentrado, Ley de Fourier, Peleg, Page, Weibull y Midilli. Se determinó el coeficiente convectivo de transferencia de calor (h), la difusividad térmica (α), y las constantes de los modelos empíricos. El h fue de 7,04 y 7,74 W/m2 °C para el tostado de 100 y 200 g, respectivamente. La α fue de 3,09 x 10-8 y 3,28 x 10-8 m2/s para el tostado de 100 y 200 g, respectivamente. Las constantes de velocidad de los modelos empíricos mostraron diferencia en el tostado de 100 y 200 g. Todos los modelos representaron muy bien los datos experimentales, pues los valores de R2, MRSE y MA%E fueron próximos de 1, próximos de 0 y menores a 10%, respectivamente. El mejor modelo matemático fue el de Peleg.
Referencias
- Ahmad, S., Khan, M. A., & Kamil, M. (2015). Mathematical modeling of meat cylinder cooking. LWT - Food Science and Technology, 60(2), 678–683. https://www-scopus-com.scopeesprx.elsevier.com/record/display.uri?origin=recordpage&zone=relatedDocuments&eid=2-s2.0-84922324178&citeCnt=26&noHighlight=false&sort=plf-f&src=s&st1=Prediction+of+cooking+times+and+weight+losses+during+meat+roasting&st2=&sid=
- Ariana, L., Concepci, I., Mercedes, L., Barajas-fern, J., Joaqu, F., & Garc, P. (2019). Cocoa Bean Roasting. Processes, 7, 770. https://doi.org/10.3390/pr7100770
- Bart-Plange, a. (2012). Effect of Moisture, Bulk Density and Temperature on Thermal Conductivity of Ground Cocoa Beans and Ground Sheanut Kernels. Global Journal of Science Frontier Research, 7(8), 1–5. http://www.journalofagriculture.org/index.php/GJSFR/article/view/32
- Bastos, V. S., Santos, F. S., Gomes, L. P., Leite, M. O., Flosi, V. M., & Del, E. M. (2018). Analysis of the cocobiota and metabolites of Moniliophthora perniciosa -resistant Theobroma cacao beans during spontaneous fermentation in southern Brazil. J Sci Food Agric, 98(2018), 4963–4970. https://doi.org/10.1002/jsfa.9029
- Çengel, Y. A., & Ghajar, A. J. (2011). Transferencia de calor e masa. Fundamentos y aplicaciones (McGraw-Hill (ed.); 4a ed.).
- Ciou, J. Y., Chen, H. C., Chen, C. W., & Yang, K. M. (2021). Relationship between antioxidant components and oxidative stability of peanut oils as affected by roasting temperatures. Agriculture (Switzerland), 11(4), 1–11. https://doi.org/10.3390/agriculture11040300
- Dash, K. K., Sharma, M., & Tiwari, A. (2022). Heat and mass transfer modeling and quality changes during deep fat frying: A comprehensive review. Journal of Food Process Engineering. https://doi.org/10.1111/jfpe.13999
- Dhalsamant, K., Tripathy, P. P., & Shrivastava, S. L. (2018). Heat transfer analysis during mixed-mode solar drying of potato cylinders incorporating shrinkage: Numerical simulation and experimental validation. Food and Bioproducts Processing, 109, 107–121. https://doi.org/10.1016/j.fbp.2018.03.005
- Edem, J., Hinneh, M., Walle, D. Van De, Ohene, E., Boeckx, P., & Dewettinck, K. (2016). Factors in fluencing quality variation in cocoa (Theobroma cacao) bean flavour profile — A review. Food Research International Journal, 82, 44–52. https://doi.org/10.1016/j.foodres.2016.01.012
- Eskes, A., Rodriguez, C. A. C., Cruz Condori, D., Seguine, E., & Garcia Carrion, Luis Lachenaud, P. (2018). Large genetic diversity for fine-flavor traits unveiled in cacao (Theobroma cacao L.) with special attention to the native Chuncho variety in Cusco, Peru. AgroTropica, 30(3), 157–174. https://doi.org/https://doi.org/10.21757/0103-3816.2018v30np157-174
- Fabbri, A., Cevoli, C., Alessandrini, L., & Romani, S. (2011). Numerical modeling of heat and mass transfer during coffee roasting process. Journal of Food Engineering, 105(2), 264–269. https://doi.org/10.1016/j.jfoodeng.2011.02.030
- Fernández-Romero, E., Chavez-Quintana, S. G., Siche, R., Castro-Alayo, E. M., & Cardenas-Toro, F. P. (2020). The kinetics of total phenolic content and monomeric Flavan-3-ols during the roasting process of Criollo Cocoa. Antioxidants, 9(2), 7–10. https://doi.org/10.3390/antiox9020146
- Garcia Paternina, M., Alvis Bermudez, A., & Garcia Mogollon, C. (2015). Modelado de la cinética de secado de mango pre-tratadas con deshidratación osmótica y microondas. Biotecnoloía En El Sector Agropecuario y Agroindustrial, 13(2), 22. https://doi.org/10.18684/bsaa(13)22-29
- Gea Galluzzi, J. van E. E. T. M. van Z. J. L. T. H. (2012). Present Spatial Diversity Patterns ofTheobroma cacaoL.in the Neotropics Reflect Genetic Differentiation inPleistocene Refugia Followed by Human-InfluencedDispersal. Plos One, 7(10), 1–17. https://doi.org/0.1371/journal.pone.0047676
- Górecki, M., & Hallmann, E. (2020). The antioxidant content of coffee and its in vitro activity as an effect of its production method and roasting and brewing time. Antioxidants, 9(4). https://doi.org/10.3390/antiox9040308
- Hong, S. J., Cho, J. J., Boo, C. G., Youn, M. Y., Lee, S. M., & Shin, E. C. (2020). Comparison of physicochemical and sensory properties of bean sprout and peanut sprout extracts, subsequent to roasting. Journal of the Korean Society of Food Science and Nutrition, 49(4), 356–369. https://doi.org/10.3746/jkfn.2020.49.4.356
- Huamán Castilla, N. L., Yupanqui, G., Allcca, E., & Allcca, G. (2016). Efecto del contenido de humedad y temperatura sobre la difusividad térmica en granos andinos. Revista de La Sociedad Química Del Perú, 82(3), 259–271. https://doi.org/10.37761/rsqp.v82i3.56
- Isleroglu, H., & Kaymak-ertekin, F. (2016). Modelling of heat and mass transfer during cooking in steam-assisted hybrid oven. Journal of Food Engineering, 181, 50–58. https://doi.org/10.1016/j.jfoodeng.2016.02.027
- Kadow, D., Niemenak, N., Rohn, S., & Lieberei, R. (2015). Fermentation-like incubation of cocoa seeds (Theobroma cacao L.) e Reconstruction and guidance of the fermentation process. LWT - Food Science and Technology, 62, 357–361.
- Klinbun, W., & Rattanadecho, P. (2019). Effects of power input and food aspect ratio on microwave thawing process of frozen food in commercial oven. Journal of Microwave Power and Electromagnetic Energy, 53(4), 225–242. https://doi.org/10.1080/08327823.2019.1677430
- Kondjoyan, A., Oillic, S., Portanguen, S., & Gros, J. (2013). Combined heat transfer and kinetic models to predict cooking loss during heat treatment of beef meat. MESC, 95(2), 336–344. https://doi.org/10.1016/j.meatsci.2013.04.061
- Koua, B. K., Koffi, P. M. E., & Gbaha, P. (2019). Evolution of shrinkage, real density, porosity, heat and mass transfer coefficients during indirect solar drying of cocoa beans. Journal of the Saudi Society of Agricultural Sciences, 18(1), 72–82. https://doi.org/10.1016/j.jssas.2017.01.002
- Krysiak, W. (2011). Effects of convective and microwave roasting on the physicochemical properties of cocoa beans and cocoa butter extracted from this material. Grasas y Aceites, 62(4), 467–478. https://doi.org/10.3989/gya.114910
- Kwok, R., Lee Wee Ting, K., Schwarz, S., Claassen, L., & Lachenmeier, D. W. (2020). Current Challenges of Cold Brew Coffee—Roasting, Extraction, Flavor Profile, Contamination, and Food Safety. Challenges, 11(2), 26. https://doi.org/10.3390/challe11020026
- Mejía, A., Meza, G., Espichán, F., Mogrovejo, J., & Rojas, R. (2021). Chemical and sensory profiles of peruvian native cocoas and chocolates from the Bagua and Quillabamba regions. Food Science and Technology (Brazil), 41(December), 576–582. https://doi.org/https://doi.org/10.1111/jfpe.13999
- Mohite, A. M., Sharma, N., & Mishra, A. (2019). Influence of different moisture content on engineering properties of tamarind seeds. Agricultural Engineering International: CIGR Journal, 21(1), 220–224. https://cigrjournal.org/index.php/Ejounral/article/view/5226
- Münchow, M., Alstrup, J., Steen, I., & Giacalone, D. (2020). Roasting conditions and coffee flavor: A multi-study empirical investigation. Beverages, 6(2), 1–14. https://doi.org/10.3390/beverages6020029
- Nieves-Orduña, H. E., Müller, M., Krutovsky, K. V., & Gailing, O. (2021). Geographic patterns of genetic variation among cacao (Theobroma cacao l.) populations based on chloroplast markers. Diversity, 13(6). https://doi.org/10.3390/d13060249
- Oliveira, M. E. de, Oliveira, R. L. Z. de, Souza, M. F. L. Z. de, Harada, E. S., & Tech, A. R. B. (2018a). Desenvolvimento de sensores para monitoramento de ambiente aviário com ênfase em controle térmico. Computers and Industrial Engineering, 12(3), 234–240.
- Oliveira, M. E. de, Oliveira, R. L. Z. de, Souza, M. F. L. Z. de, Harada, E. S., & Tech, A. R. B. (2018b). DESENVOLVIMENTO DE SENSORES PARA MONITORAMENTO DE AMBIENTE AVIÁRIO COM ÊNFASE EM CONTROLE TÉRMICO. Computers and Industrial Engineering, 12(3), 234–240.
- Quispe, M., & Calderón, J. (2016). Uso de sensores industriales en la preparación de alimentos. Campus, 21(21), 81–89. https://doi.org/10.24265/campus.2016.v21n21.08
- Rabeler, F., & Feyissa, A. H. (2018). Modelling the transport phenomena and texture changes of chicken breast meat during the roasting in a convective oven. Journal of Food Engineering, 237, 60–68. https://doi.org/10.1016/j.jfoodeng.2018.05.021
- Ryu, J. Y., Choi, Y., Hong, K. H., Chung, Y. S., & Cho, S. K. (2020). Effect of roasting and brewing on the antioxidant and antiproliferative activities of tartary buckwheat. Foods, 9(9), 1–10. https://doi.org/10.3390/foods9091331