Use of sensors for mathematical modeling during the roasting of cocoa beans (Theobroma cacao) of the Chuncho variety
Published 2022-05-16
Keywords
- Sistema concentrado,
- segunda ley de Fourier ,
- sensores tipo K ,
- coeficiente convectivo de transferencia de calor ,
- fusividad térmica.
How to Cite
Abstract
Simple innovations in temperature control during cocoa roasting can help improve the quality of chocolate made by small entrepreneurs in the Andean-Amazonian valleys of Peru. The objective of this research was to evaluate the effect of oven temperature on the temperature of cocoa beans (Theobroma cacao) during roasting, using six mathematical models. Cocoa beans in the amounts of 100 and 200 g were placed in a tray in a conventional electric oven set at 250 °C. A K-type thermocouple with its respective reader was introduced in the geometric center of a cocoa bean and another 5 cm from the surface. The readings were recorded every 5 min and exported via Bluetooth to a computer. The temperature data were fitted to the mathematical models of the Concentrated System, Fourier's Law, Peleg, Page, Weibull and Midilli. The convective heat transfer coefficient (h), the thermal diffusivity (α), and the constants of the empirical models were determined. The h was 7.04 and 7.74 W/m2 °C for the toast of 100 and 200 g, respectively. The α was 3.09 x 10-8 and 3.28 x 10-8 m2/s for the 100 and 200 g toast, respectively. The rate constants of the empirical models showed a difference in the roasting of 100 and 200 g. All models represented the experimental data very well, since the values of R2, MRSE and MA%E were close to 1, close to 0 and less than 10%, respectively. The best mathematical model was that of Peleg.
References
- Ahmad, S., Khan, M. A., & Kamil, M. (2015). Mathematical modeling of meat cylinder cooking. LWT - Food Science and Technology, 60(2), 678–683. https://www-scopus-com.scopeesprx.elsevier.com/record/display.uri?origin=recordpage&zone=relatedDocuments&eid=2-s2.0-84922324178&citeCnt=26&noHighlight=false&sort=plf-f&src=s&st1=Prediction+of+cooking+times+and+weight+losses+during+meat+roasting&st2=&sid=
- Ariana, L., Concepci, I., Mercedes, L., Barajas-fern, J., Joaqu, F., & Garc, P. (2019). Cocoa Bean Roasting. Processes, 7, 770. https://doi.org/10.3390/pr7100770
- Bart-Plange, a. (2012). Effect of Moisture, Bulk Density and Temperature on Thermal Conductivity of Ground Cocoa Beans and Ground Sheanut Kernels. Global Journal of Science Frontier Research, 7(8), 1–5. http://www.journalofagriculture.org/index.php/GJSFR/article/view/32
- Bastos, V. S., Santos, F. S., Gomes, L. P., Leite, M. O., Flosi, V. M., & Del, E. M. (2018). Analysis of the cocobiota and metabolites of Moniliophthora perniciosa -resistant Theobroma cacao beans during spontaneous fermentation in southern Brazil. J Sci Food Agric, 98(2018), 4963–4970. https://doi.org/10.1002/jsfa.9029
- Çengel, Y. A., & Ghajar, A. J. (2011). Transferencia de calor e masa. Fundamentos y aplicaciones (McGraw-Hill (ed.); 4a ed.).
- Ciou, J. Y., Chen, H. C., Chen, C. W., & Yang, K. M. (2021). Relationship between antioxidant components and oxidative stability of peanut oils as affected by roasting temperatures. Agriculture (Switzerland), 11(4), 1–11. https://doi.org/10.3390/agriculture11040300
- Dash, K. K., Sharma, M., & Tiwari, A. (2022). Heat and mass transfer modeling and quality changes during deep fat frying: A comprehensive review. Journal of Food Process Engineering. https://doi.org/10.1111/jfpe.13999
- Dhalsamant, K., Tripathy, P. P., & Shrivastava, S. L. (2018). Heat transfer analysis during mixed-mode solar drying of potato cylinders incorporating shrinkage: Numerical simulation and experimental validation. Food and Bioproducts Processing, 109, 107–121. https://doi.org/10.1016/j.fbp.2018.03.005
- Edem, J., Hinneh, M., Walle, D. Van De, Ohene, E., Boeckx, P., & Dewettinck, K. (2016). Factors in fluencing quality variation in cocoa (Theobroma cacao) bean flavour profile — A review. Food Research International Journal, 82, 44–52. https://doi.org/10.1016/j.foodres.2016.01.012
- Eskes, A., Rodriguez, C. A. C., Cruz Condori, D., Seguine, E., & Garcia Carrion, Luis Lachenaud, P. (2018). Large genetic diversity for fine-flavor traits unveiled in cacao (Theobroma cacao L.) with special attention to the native Chuncho variety in Cusco, Peru. AgroTropica, 30(3), 157–174. https://doi.org/https://doi.org/10.21757/0103-3816.2018v30np157-174
- Fabbri, A., Cevoli, C., Alessandrini, L., & Romani, S. (2011). Numerical modeling of heat and mass transfer during coffee roasting process. Journal of Food Engineering, 105(2), 264–269. https://doi.org/10.1016/j.jfoodeng.2011.02.030
- Fernández-Romero, E., Chavez-Quintana, S. G., Siche, R., Castro-Alayo, E. M., & Cardenas-Toro, F. P. (2020). The kinetics of total phenolic content and monomeric Flavan-3-ols during the roasting process of Criollo Cocoa. Antioxidants, 9(2), 7–10. https://doi.org/10.3390/antiox9020146
- Garcia Paternina, M., Alvis Bermudez, A., & Garcia Mogollon, C. (2015). Modelado de la cinética de secado de mango pre-tratadas con deshidratación osmótica y microondas. Biotecnoloía En El Sector Agropecuario y Agroindustrial, 13(2), 22. https://doi.org/10.18684/bsaa(13)22-29
- Gea Galluzzi, J. van E. E. T. M. van Z. J. L. T. H. (2012). Present Spatial Diversity Patterns ofTheobroma cacaoL.in the Neotropics Reflect Genetic Differentiation inPleistocene Refugia Followed by Human-InfluencedDispersal. Plos One, 7(10), 1–17. https://doi.org/0.1371/journal.pone.0047676
- Górecki, M., & Hallmann, E. (2020). The antioxidant content of coffee and its in vitro activity as an effect of its production method and roasting and brewing time. Antioxidants, 9(4). https://doi.org/10.3390/antiox9040308
- Hong, S. J., Cho, J. J., Boo, C. G., Youn, M. Y., Lee, S. M., & Shin, E. C. (2020). Comparison of physicochemical and sensory properties of bean sprout and peanut sprout extracts, subsequent to roasting. Journal of the Korean Society of Food Science and Nutrition, 49(4), 356–369. https://doi.org/10.3746/jkfn.2020.49.4.356
- Huamán Castilla, N. L., Yupanqui, G., Allcca, E., & Allcca, G. (2016). Efecto del contenido de humedad y temperatura sobre la difusividad térmica en granos andinos. Revista de La Sociedad Química Del Perú, 82(3), 259–271. https://doi.org/10.37761/rsqp.v82i3.56
- Isleroglu, H., & Kaymak-ertekin, F. (2016). Modelling of heat and mass transfer during cooking in steam-assisted hybrid oven. Journal of Food Engineering, 181, 50–58. https://doi.org/10.1016/j.jfoodeng.2016.02.027
- Kadow, D., Niemenak, N., Rohn, S., & Lieberei, R. (2015). Fermentation-like incubation of cocoa seeds (Theobroma cacao L.) e Reconstruction and guidance of the fermentation process. LWT - Food Science and Technology, 62, 357–361.
- Klinbun, W., & Rattanadecho, P. (2019). Effects of power input and food aspect ratio on microwave thawing process of frozen food in commercial oven. Journal of Microwave Power and Electromagnetic Energy, 53(4), 225–242. https://doi.org/10.1080/08327823.2019.1677430
- Kondjoyan, A., Oillic, S., Portanguen, S., & Gros, J. (2013). Combined heat transfer and kinetic models to predict cooking loss during heat treatment of beef meat. MESC, 95(2), 336–344. https://doi.org/10.1016/j.meatsci.2013.04.061
- Koua, B. K., Koffi, P. M. E., & Gbaha, P. (2019). Evolution of shrinkage, real density, porosity, heat and mass transfer coefficients during indirect solar drying of cocoa beans. Journal of the Saudi Society of Agricultural Sciences, 18(1), 72–82. https://doi.org/10.1016/j.jssas.2017.01.002
- Krysiak, W. (2011). Effects of convective and microwave roasting on the physicochemical properties of cocoa beans and cocoa butter extracted from this material. Grasas y Aceites, 62(4), 467–478. https://doi.org/10.3989/gya.114910
- Kwok, R., Lee Wee Ting, K., Schwarz, S., Claassen, L., & Lachenmeier, D. W. (2020). Current Challenges of Cold Brew Coffee—Roasting, Extraction, Flavor Profile, Contamination, and Food Safety. Challenges, 11(2), 26. https://doi.org/10.3390/challe11020026
- Mejía, A., Meza, G., Espichán, F., Mogrovejo, J., & Rojas, R. (2021). Chemical and sensory profiles of peruvian native cocoas and chocolates from the Bagua and Quillabamba regions. Food Science and Technology (Brazil), 41(December), 576–582. https://doi.org/https://doi.org/10.1111/jfpe.13999
- Mohite, A. M., Sharma, N., & Mishra, A. (2019). Influence of different moisture content on engineering properties of tamarind seeds. Agricultural Engineering International: CIGR Journal, 21(1), 220–224. https://cigrjournal.org/index.php/Ejounral/article/view/5226
- Münchow, M., Alstrup, J., Steen, I., & Giacalone, D. (2020). Roasting conditions and coffee flavor: A multi-study empirical investigation. Beverages, 6(2), 1–14. https://doi.org/10.3390/beverages6020029
- Nieves-Orduña, H. E., Müller, M., Krutovsky, K. V., & Gailing, O. (2021). Geographic patterns of genetic variation among cacao (Theobroma cacao l.) populations based on chloroplast markers. Diversity, 13(6). https://doi.org/10.3390/d13060249
- Oliveira, M. E. de, Oliveira, R. L. Z. de, Souza, M. F. L. Z. de, Harada, E. S., & Tech, A. R. B. (2018a). Desenvolvimento de sensores para monitoramento de ambiente aviário com ênfase em controle térmico. Computers and Industrial Engineering, 12(3), 234–240.
- Oliveira, M. E. de, Oliveira, R. L. Z. de, Souza, M. F. L. Z. de, Harada, E. S., & Tech, A. R. B. (2018b). DESENVOLVIMENTO DE SENSORES PARA MONITORAMENTO DE AMBIENTE AVIÁRIO COM ÊNFASE EM CONTROLE TÉRMICO. Computers and Industrial Engineering, 12(3), 234–240.
- Quispe, M., & Calderón, J. (2016). Uso de sensores industriales en la preparación de alimentos. Campus, 21(21), 81–89. https://doi.org/10.24265/campus.2016.v21n21.08
- Rabeler, F., & Feyissa, A. H. (2018). Modelling the transport phenomena and texture changes of chicken breast meat during the roasting in a convective oven. Journal of Food Engineering, 237, 60–68. https://doi.org/10.1016/j.jfoodeng.2018.05.021
- Ryu, J. Y., Choi, Y., Hong, K. H., Chung, Y. S., & Cho, S. K. (2020). Effect of roasting and brewing on the antioxidant and antiproliferative activities of tartary buckwheat. Foods, 9(9), 1–10. https://doi.org/10.3390/foods9091331