Vol. 20 Núm. 3 (2018)
Artículo original

Confort térmico en una habitación de adobe con sistema de almacenamiento de calor en los Andes del Perú

Antonio Holguino Huarza
Universidad Nacional del Altiplano Puno Perú
Luis Olivera Marocho
Universidad Nacional del Altiplano Puno Perú
Katterine Ursula Escobar Copa
Universidad Andina Néstor Cáceres Velásquez Juliaca Puno Perú

Publicado 2018-07-27

Palabras clave

  • Thermal accumulator,
  • specific heat,
  • thermal conductivity,
  • room with thermal comfort,
  • adobe building materials
  • Acumulador térmico,
  • calor especifico,
  • habitación con confort térmico,
  • materiales de construcción de adobe

Cómo citar

Holguino Huarza, A. ., Olivera Marocho, L. ., & Escobar Copa, K. U. . (2018). Confort térmico en una habitación de adobe con sistema de almacenamiento de calor en los Andes del Perú. Revista De Investigaciones Altoandinas, 20(3), 289-300. https://doi.org/10.18271/ria.2018.393

Resumen

El objetivo de este trabajo fue la evaluación del confort térmico al interior de la habitación de prueba (HP) de adobe y materiales de la zona alto andina del Perú, como la piedra andesita que es un acumulador de calor. Esta investigación experimental, determinó los valores de la conductividad térmica 0,176  0,149 y 0,118 W/mK para el adobe, yeso y paja. Se efectuó una comparación entre los valores de la conductividad térmica y calor específico, obtenido experimentalmente para los materiales y sistemas utilizados en la construcción de HP con los valores conocidos de materiales específicos como el agua y el aire. El diseño y uso de los materiales en la construcción de la pared, puerta y ventana, permitieron determinar los valores de las conductividades térmicas iguales a 0,061  0,030 y 0,027 W/mK respectivamente, que son similares a la conductividad térmica de un aislante térmico natural como el aire cuyo valor es 0,026 W/mK. La trasferencia de energía calorífica hacia el exterior de la HP, durante 11 horas nocturnas es 0,815 MJ. El acumulador de energía instalado en la HP construido con piedra, guano y madera cuyos valores del calor específico fueron 1235,13  2416,44 y 2212,77 J/kgK respectivamente; comparada con la del agua que es un buen almacenador de energía, representan 29,55; 57,81 y 52,94 % respectivamente. El sistema acumulador de HP almacena energía calorífica equivalente a 8,305 MJ, el excedente de energía calorífica permite que la temperatura al interior de HP durante las épocas de invierno tenga valores medio mayores en 63,83 y 68,83 % a las temperaturas medias de HC y MAC respectivamente.

Citas

  1. Abanto G. A., Karkri M., Lefebvre G., Horn M., Solis J. L., Gómez M.M. (2017). Thermal properties of adobe employed in Peruvian rural areas: Experimental results and numerical simulation of a traditional bio-composite material. Case Studies in Construction Materials, (June), 177-191.
  2. Almujahid, A., Kaneesamkandi, Z. (2013). Construction of a test room for evaluating performance of building wall system under real conditions. International Journal of Research in Science, Engineering and Tecnology, 2(6), 8.
  3. A Kumar, BM Suman. (2013). Experimental evaluation of insulation materials for walls and roofs and their impact on indoor thermal comfort under composite climate. Building and Environment 59. 635e643.
  4. Ashour, T., Wieland, H., Georg, H., Bockisch, F. J., & Wu, W. (2010). The influence of natural reinforcement fibres on insulation values of earth plaster for straw bale buildings. Materials and Design, 31(10), 4676–4685. http://doi.org/10.1016/j.matdes.2010.05.02
  5. Baldille, G., Bianchi, F. (2014). Windows thermal resistance: Infrared thermography aided comparative analysis among finite volumens simulations and experimental methods. International Journal of Research in Science, Appied Energy, 136(2014) 250-258.
  6. Borbón, A.C., Cabanillas, R.E. & Perez. J.R. (2010). Modelacion y Simulacion de la Transferencia de Calor en muro de concreto hueco. Informacion Tecnologica, 27-38.
  7. Cagnon, H., Aubert, J. E., Coutand, M., & Magniont, C. (2014). Hygrothermal properties of earth bricks. Energy and Buildings, 80, 208–217. http://doi.org/10.1016/j.enbuild.2014.05.024.
  8. Carli, M. D., Scarpa, M., Tomasi, R., & Zarrella, A. (2012). DIGITHON : A numerical model for the thermal balance of rooms equipped with radiant systems. Building and Environment, 57, 126-144. https://doi.org/10.1016/j.buildenv.2012.04.016
  9. Daudon, D., Sieffert, Y., Albarracín, O., Garino, L., & Navarta, G. (2014). Adobe construction modeling by discrete element method : first methodological 8steps. Procedia Economics and Finance, 18(September), 247-254. doi: 10.1016/S2212-5671(14)00937-X.
  10. E. Quagliarini, MD Orazio, S. Lenci. (2015). The properties and durability of adobe earth-based masonry blocks, in Eco-Efficient Masonry Bricks and Blocks. F. Pacheco- Torgal, P.B.L.A. Labrincha, and S.K. Chindaprasirt, Editors. Woodhead Publishing: Oxford. p. 361-378.
  11. G. Catalan (2016). Determining the optimum addition of vegetable materials in adobe bricks. Procedia Technology. 22: p. 259-265.
  12. Goodhew, S., & Griffiths, R. (2005). Sustainab le earth walls to meet the building regulations. 37, 451-459. https://doi.org/10.1016/j.enbuild.2004.08.005
  13. Harman, L., (2010), Confort térmico de Viviendas Altoandinas un enfoque integral. Lima, Perú: Talleres gráficos de Balcari Editores SAC, Jr. Yungay 1695, Chacra Ríos Norte.
  14. Hassanain, A. A., Hokam, E. M., & Mallick, T. K. (2011). Effect of solar storage wall on the passive solar heating constructions. 43, 737-747. https://doi.org/10.1016/j.enbuild.2010.11.020
  15. Hodder, S. G., Parsons, K. (2007). The effects of solar radiation on thermal comfort. Int J Biometerol (2007) 51: 233-250.
  16. Johansson, E., Rohinton, E. (2006).The influence of urban desing on outdoor thermal comfort in the, humid city of Colombo, Sri Lanka. Int J Biometeorol (2006) 51: 119-133.
  17. Litibari, S.T., Mehrali, M., Mahlia, T.M.I., Metselaar, H.S.C. (2013).Synthesis characterization and thermal properties of nanoencapsulated phase change material viasol-gel method. Energy; 61: 664-72.
  18. Liu M, Steven N H, Bell S, Belusko M, Jacob R, Will G, Saman W, Bruno F. (2016). Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies. Renewable and Sustainable Energy Reviews 531411–1432.
  19. Martín, S., Mazarrón, F. R., & Cañas, I. (2010). Study of thermal environment inside rural houses of Navapalos ( Spain ): The advantages of reuse buildings of high thermal inertia. Construction and Building Materials, 24(5), 666-676. https://doi.org/10.1016/j.conbuildmat.2009.11.002
  20. Michels, C., Lamberts, R., Güths, S. (2008). Evaluation of heat flux reduction provided by the use of radiant barriers in clay tile roofs. Energy and building 40 (2008) 445-451.
  21. Mishra, JA Usmani. (2014). Energy conservation in mud house as compared to brick wall building in India. International Journal of Advanced Engineering Research and Studies E-ISSN2249–8974. 2014.
  22. Minke, G. (2006). Building with Earth Desing and Technology of a Sustainable Architecture. Birkhauser-Publishers for Architecture, Berlin. 198p.
  23. Mohammad, Dr. S., Al-Homoud. (2005). Performance characteristics and practical applications of common building thermal insulation materials. Building and Environment 40 (2005) 353-366.
  24. Morony, J. J. (2004). Adobe and latent heat, a cristal connection. Biology Deparment Southwest Texas Junior College, 12-34.
  25. Neves, C., Borges, O.F. (2011). Técnicas de Construcción con Tierra. Bauru, Brasil.: Red Iberoamericana Proterra.
  26. Pacheco - Torgal, F., & Jalali, S. (2012). Earth construction: Lessons from the past for future eco-efficient construction. Construction and Building Materials, 29, 512–519. http://doi.org/10.1016/j.conbuildmat.2011.10.054
  27. Praseeda, K. I., Reddy, B. V. V., & Mani, M. (2015). Embodied energy assessment of building materials in India using process and input–output analysis. Energy and Buildings, 86, 677–686. http://doi.org/10.1016/j.enbuild.2014.10.042
  28. Parra-Saldivar, M.,Batty, W. (2006). Thermal behaviour of adobe construccion. Building and environment 41(2006) 1892-1904.
  29. Shukla, A., Tiwari, G. N., & Sodha, M. S. (2009). Embodied energy analysis of adobe house. Renewable Energy, 34(3), 755–761. http://doi.org/10.1016/j.renene.2008.04.002
  30. Khudhair, A. M., Farid, M. M. (2004). A review on energy conservation in buildingapplications with thermal storage by latent heat using phase change materials. Energy Conversion and Management 45(2004) 263-275.
  31. Taylor, P., Fuller, R. J., Luther, M. B. (2008). Energy use and thermal comfort in a rammed earth office building. Energy and Building 40 (2008) 793-800.
  32. Wu, J., Bai, G.-l., Zhao, H.-y., & Li, X. (2015). Mechanical and thermal tests of an innovative environment-friendly hollow block as self-insulation wall materials. CONSTRUCTION & BUILDING MATERIALS, 93, 342-349. https://doi.org/10.1016/j.conbuildmat.2015.06.003
  33. V. Sharma, H.K. Vinayak, and B.M. Marwaha. (2015). Enhancing sustainability of rural adobe houses of hills by addition of vernacular fiber reinforcement. International Journal of Sustainable Built Environment. 4(2): p. 348-358.
  34. Yang X, Qin FGF, Jiang R. (2014). Experimental investigation of a molten salt thermocline storage tank. Int J Sustain Energy.1–9.
  35. Young, H. D., Freedman, R.A. (2009). Física Universitaria (Vol. I). México Pearson Educación.
  36. Zhang, J., Xu, W., Li, A., Zheng, K., & Zhang, J. (2016). Study on improving thermal environment and energy conservation of quadrangle adobe dwelling. Energy and Buildings, 129, 92–101. http://doi.org/10.1016/j.enbuild.2016.07.048