Vol. 24 Núm. 3 (2022)
Artículo original

Caracterización del viento con la función de Weibull para una zona altoandina, Laraqueri - Perú

Ubaldo Yancachajlla Tito
Departamento de Ingeniería en Energías Renovables, Universidad Nacional de Juliaca, Av. Nueva Zelandia 631, 21001, Juliaca, Perú
Oliver Amadeo Vilca Huayta
Departamento de Ingeniería de Sistemas, Universidad Nacional del Altiplano, Av. Floral 1153, 21001, Puno, Perú

Publicado 2022-08-25

Palabras clave

  • Distribución de Weibull,
  • densidad de potencia eólico,
  • rosa de los vientos,
  • velocidad del viento

Cómo citar

Yancachajlla Tito, U., & Vilca Huayta, O. A. (2022). Caracterización del viento con la función de Weibull para una zona altoandina, Laraqueri - Perú. Revista De Investigaciones Altoandinas, 24(3), 190–198. https://doi.org/10.18271/ria.2022.439

Resumen

Es importante el estudio de la disponibilidad de energías renovables y en particular el eólico para su valorización. Por lo que este artículo analiza el potencial de la energía eólica de un sitio ubicado en el sur del Perú (Laraqueri), utilizando datos de viento de 2020 a una altura de 10 metros sobre el nivel del suelo. Se utilizaron dos métodos numéricos para estimar los parámetros de la función de distribución de Weibull y se calculó la densidad de potencia para cada mes. También se calculó el grado de error de la función de Weibull con los datos observados. Se concluye que, la ubicación propuesta es apropiada para la generación de energía eólica de baja potencia y la metodología propuesta se puede utilizar en otros lugares.

Citas

  1. Adnan, M., Ahmad, J., Ali, S. F., & Imran, M. (2021). A techno-economic analysis for power generation through wind energy: A case study of Pakistan. Energy Reports, 7, 1424–1443. https://doi.org/10.1016/J.EGYR.2021.02.068
  2. Akdağ, S. A., & Dinler, A. (2009). A new method to estimate Weibull parameters for wind energy applications. Energy Conversion and Management, 50(7), 1761–1766. https://doi.org/10.1016/j.enconman.2009.03.020
  3. Alsamamra, H. R., Salah, S., Shoqeir, J. A. H., & Manasra, A. J. (2022). A comparative study of five numerical methods for the estimation of Weibull parameters for wind energy evaluation at Eastern Jerusalem, Palestine. Energy Reports, 8, 4801–4810. https://doi.org/10.1016/J.EGYR.2022.03.180
  4. Fazelpour, F., Soltani, N., Soltani, S., & Rosen, M. A. (2015). Assessment of wind energy potential and economics in the north-western Iranian cities of Tabriz and Ardabil. Renewable and Sustainable Energy Reviews, 45, 87–99. https://doi.org/10.1016/j.rser.2015.01.045
  5. Gars, J., Spiro, D., & Wachtmeister, H. (2022). What is the effect of EU’s fuel-tax cuts on Russia’s oil income? https://doi.org/10.48550/arxiv.2204.03318
  6. He, J. Y., Chan, P. W., Li, Q. S., & Lee, C. W. (2022). Characterizing coastal wind energy resources based on sodar and microwave radiometer observations. Renewable and Sustainable Energy Reviews, 163, 112498. https://doi.org/10.1016/J.RSER.2022.112498
  7. Juanpera, M., Domenech, B., Ferrer-Martí, L., Garzón, A., & Pastor, R. (2021). Renewable-based electrification for remote locations. Does short-term success endure over time? A case study in Peru. Renewable and Sustainable Energy Reviews, 146, 111177. https://doi.org/10.1016/J.RSER.2021.111177
  8. Justus, C. ~G., & Mikhail, A. (1976). Height variation of wind speed and wind distributions statistics. grl, 3(5), 261–264. https://doi.org/10.1029/GL003i005p00261
  9. Justus, C. G., Hargraves, W. R., Mikhail, A., & Graber, D. (1978). Methods for estimating wind speed frequency distributions. 17:3. https://doi.org/10.1175/1520-0450(1978)017<0350:MFEWSF>2.0.CO;2
  10. Kaplan, Y. A. (2018). Performance assessment of Power Density Method for determining the Weibull Distribution Coefficients at three different locations. Flow Measurement and Instrumentation, 63, 8–13. https://doi.org/10.1016/J.FLOWMEASINST.2018.07.004
  11. Keyhani, A., Ghasemi-Varnamkhasti, M., Khanali, M., & Abbaszadeh, R. (2010). An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran. Energy, 35(1), 188–201. https://doi.org/10.1016/j.energy.2009.09.009
  12. Khahro, S. F., Tabbassum, K., Soomro, A. M., Dong, L., & Liao, X. (2014). Evaluation of wind power production prospective and Weibull parameter estimation methods for Babaurband, Sindh Pakistan. Energy Conversion and Management, 78, 956–967. https://doi.org/10.1016/j.enconman.2013.06.062
  13. Khalid Saeed, M., Salam, A., Rehman, A. U., & Abid Saeed, M. (2019). Comparison of six different methods of Weibull distribution for wind power assessment: A case study for a site in the Northern region of Pakistan. Sustainable Energy Technologies and Assessments, 36, 100541. https://doi.org/10.1016/j.seta.2019.100541
  14. López, M. V. (2012). Ingeniería de la Energía Eólica. Marcombo.
  15. Manwell, J. F., McGowan, J. G., & Rogers, A. L. (2010). Wind Energy Explained: Theory, Design and Application. In Wind Energy Explained: Theory, Design and Application. https://doi.org/10.1002/9781119994367
  16. Martins, F., Felgueiras, C., & Smitková, M. (2018). Fossil fuel energy consumption in European countries. Energy Procedia, 153, 107–111. https://doi.org/10.1016/J.EGYPRO.2018.10.050
  17. Mohammadi, K., Alavi, O., Mostafaeipour, A., Goudarzi, N., & Jalilvand, M. (2016). Assessing different parameters estimation methods of Weibull distribution to compute wind power density. Energy Conversion and Management, 108, 322–335. https://doi.org/10.1016/J.ENCONMAN.2015.11.015
  18. National Aeronautics and Space Administration. (2022, January 13). NASA POWER - Prediction Of Worldwide Energy Resources. https://power.larc.nasa.gov/data-access-viewer
  19. Neely, C. J. (2022). The Russian Invasion, Oil and Gasoline Prices, and Recession. Economic Synopses, 2022(10). https://doi.org/10.20955/ES.2022.10
  20. Ouahabi, M. H., Elkhachine, H., Benabdelouahab, F., & Khamlichi, A. (2020). Comparative study of five different methods of adjustment by the Weibull model to determine the most accurate method of analyzing annual variations of wind energy in Tetouan - Morocco. Procedia Manufacturing, 46, 698–707. https://doi.org/10.1016/j.promfg.2020.03.099
  21. Patidar, H., Shende, V., Baredar, P., & Soni, A. (2022). Comparative study of offshore wind energy potential assessment using different Weibull parameters estimation methods. Environmental Science and Pollution Research 2022, 1–16. https://doi.org/10.1007/S11356-022-19109-X
  22. Saleh, H., Abou El-Azm Aly, A., & Abdel-Hady, S. (2012). Assessment of different methods used to estimate Weibull distribution parameters for wind speed in Zafarana wind farm, Suez Gulf, Egypt. Energy, 44(1), 710–719. https://doi.org/10.1016/j.energy.2012.05.021
  23. Servicio Nacional de Meteorología e Hidrología del Perú. (2022). SENAMHI - Perú. https://www.senamhi.gob.pe/?&p=estaciones
  24. Shoaib, M., Siddiqui, I., Rehman, S., Khan, S., & Alhems, L. M. (2019). Assessment of wind energy potential using wind energy conversion system. Journal of Cleaner Production, 216, 346–360. https://doi.org/10.1016/j.jclepro.2019.01.128
  25. Soulouknga, M. H., Doka, S. Y., N.Revanna, N.Djongyang, & T.C.Kofane. (2018). Analysis of wind speed data and wind energy potential in Faya-Largeau, Chad, using Weibull distribution. Renewable Energy, 121, 1–8. https://doi.org/10.1016/j.renene.2018.01.002
  26. Tito, U. Y., Huayta, O. A. V., Borja, M. G. B., & Quispe, G. B. (2021). Optimization of a Wind-Photovoltaic Hybrid System for a Rural Housing Isolated from the Network in the District of Paucarcolla-Perú. Proceedings of the 2021 IEEE 28th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2021. https://doi.org/10.1109/INTERCON52678.2021.9533024
  27. Tito, U. Y., Vilca-Huayta, O. A., & Quispe-Huaman, L. (2020). Estimation of the wind energy potential: A case study for a site in the southern region of Peru. 2020 IEEE ANDESCON, ANDESCON 2020. https://doi.org/10.1109/ANDESCON50619.2020.9272028
  28. Vidal, J. (2008). Atlas Eólico del Perú. 87.
  29. Wais, P. (2017). A review of Weibull functions in wind sector. Renewable and Sustainable Energy Reviews, 70, 1099–1107. https://doi.org/10.1016/J.RSER.2016.12.014