Vol. 20 No. 3 (2018)
Original articles

Thermal comfort in an adobe room with heat storage system in the Andes of Peru

Antonio Holguino Huarza
National University of the Altiplano Puno Peru
Luís Olivera Marocho
National University of the Altiplano Puno Peru
Katterine Ursula Escobar Copa
Andean University Néstor Cáceres Velásquez Juliaca Puno Peru

Published 2018-07-27

Keywords

  • Thermal accumulator,
  • specific heat,
  • thermal conductivity,
  • room with thermal comfort,
  • adobe building materials

How to Cite

Holguino Huarza, A. ., Olivera Marocho, L., & Escobar Copa, K. U. . (2018). Thermal comfort in an adobe room with heat storage system in the Andes of Peru. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 20(3), 289-300. https://doi.org/10.18271/ria.2018.393

Abstract

The objective of this work was the evaluation of thermal comfort inside the test room (HP), of adobe and materials of the high Andean area of Peru, like the andesite stone that is a heat accumulator. This experimental research work determined the values of thermal conductivity 0,176  0,149 and 0,118 W / mK for the adobe, plaster and straw. It was made a comparison was made between the values of thermal conductivity and specific heat, obtained experimentally for the materials and systems used in the construction of HP with the known values of specific materials such as water and air. The design and use of the materials in the construction of the wall, door and window, allowed to determine the values of the thermal conductivities equal to 0,061  0,030 and 0,027 W / mK respectively, that are similar to the thermal conductivity of a natural thermal insulator such as air whose value is 0.026 W / mK. The transfer of heat energy to the outside of the HP, during 11 hours at night is 0,815 MJ. The energy accumulator installed in the HP built with stone, guano and wood whose specific heat values were 1235,13  2416,44 and 2212,77 J / kgK respectively compared with the water, that is a good energy storage, that represent 29,55  57,81 and 52,94% respectively. The HP storage system stores heat energy equivalent to 8,305 MJ, the surplus of heat energy allows that temperature inside HP during the winter times to have average values higher in 63, 83 and 68, 83% at the average temperatures of HC and MAC respectively.

References

  1. Abanto G. A., Karkri M., Lefebvre G., Horn M., Solis J. L., Gómez M.M. (2017). Thermal properties of adobe employed in Peruvian rural areas: Experimental results and numerical simulation of a traditional bio-composite material. Case Studies in Construction Materials, (June), 177-191.
  2. Almujahid, A., Kaneesamkandi, Z. (2013). Construction of a test room for evaluating performance of building wall system under real conditions. International Journal of Research in Science, Engineering and Tecnology, 2(6), 8.
  3. A Kumar, BM Suman. (2013). Experimental evaluation of insulation materials for walls and roofs and their impact on indoor thermal comfort under composite climate. Building and Environment 59. 635e643.
  4. Ashour, T., Wieland, H., Georg, H., Bockisch, F. J., & Wu, W. (2010). The influence of natural reinforcement fibres on insulation values of earth plaster for straw bale buildings. Materials and Design, 31(10), 4676–4685. http://doi.org/10.1016/j.matdes.2010.05.02
  5. Baldille, G., Bianchi, F. (2014). Windows thermal resistance: Infrared thermography aided comparative analysis among finite volumens simulations and experimental methods. International Journal of Research in Science, Appied Energy, 136(2014) 250-258.
  6. Borbón, A.C., Cabanillas, R.E. & Perez. J.R. (2010). Modelacion y Simulacion de la Transferencia de Calor en muro de concreto hueco. Informacion Tecnologica, 27-38.
  7. Cagnon, H., Aubert, J. E., Coutand, M., & Magniont, C. (2014). Hygrothermal properties of earth bricks. Energy and Buildings, 80, 208–217. http://doi.org/10.1016/j.enbuild.2014.05.024.
  8. Carli, M. D., Scarpa, M., Tomasi, R., & Zarrella, A. (2012). DIGITHON : A numerical model for the thermal balance of rooms equipped with radiant systems. Building and Environment, 57, 126-144. https://doi.org/10.1016/j.buildenv.2012.04.016
  9. Daudon, D., Sieffert, Y., Albarracín, O., Garino, L., & Navarta, G. (2014). Adobe construction modeling by discrete element method : first methodological 8steps. Procedia Economics and Finance, 18(September), 247-254. doi: 10.1016/S2212-5671(14)00937-X.
  10. E. Quagliarini, MD Orazio, S. Lenci. (2015). The properties and durability of adobe earth-based masonry blocks, in Eco-Efficient Masonry Bricks and Blocks. F. Pacheco- Torgal, P.B.L.A. Labrincha, and S.K. Chindaprasirt, Editors. Woodhead Publishing: Oxford. p. 361-378.
  11. G. Catalan (2016). Determining the optimum addition of vegetable materials in adobe bricks. Procedia Technology. 22: p. 259-265.
  12. Goodhew, S., & Griffiths, R. (2005). Sustainab le earth walls to meet the building regulations. 37, 451-459. https://doi.org/10.1016/j.enbuild.2004.08.005
  13. Harman, L., (2010), Confort térmico de Viviendas Altoandinas un enfoque integral. Lima, Perú: Talleres gráficos de Balcari Editores SAC, Jr. Yungay 1695, Chacra Ríos Norte.
  14. Hassanain, A. A., Hokam, E. M., & Mallick, T. K. (2011). Effect of solar storage wall on the passive solar heating constructions. 43, 737-747. https://doi.org/10.1016/j.enbuild.2010.11.020
  15. Hodder, S. G., Parsons, K. (2007). The effects of solar radiation on thermal comfort. Int J Biometerol (2007) 51: 233-250.
  16. Johansson, E., Rohinton, E. (2006).The influence of urban desing on outdoor thermal comfort in the, humid city of Colombo, Sri Lanka. Int J Biometeorol (2006) 51: 119-133.
  17. Litibari, S.T., Mehrali, M., Mahlia, T.M.I., Metselaar, H.S.C. (2013).Synthesis characterization and thermal properties of nanoencapsulated phase change material viasol-gel method. Energy; 61: 664-72.
  18. Liu M, Steven N H, Bell S, Belusko M, Jacob R, Will G, Saman W, Bruno F. (2016). Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies. Renewable and Sustainable Energy Reviews 531411–1432.
  19. Martín, S., Mazarrón, F. R., & Cañas, I. (2010). Study of thermal environment inside rural houses of Navapalos ( Spain ): The advantages of reuse buildings of high thermal inertia. Construction and Building Materials, 24(5), 666-676. https://doi.org/10.1016/j.conbuildmat.2009.11.002
  20. Michels, C., Lamberts, R., Güths, S. (2008). Evaluation of heat flux reduction provided by the use of radiant barriers in clay tile roofs. Energy and building 40 (2008) 445-451.
  21. Mishra, JA Usmani. (2014). Energy conservation in mud house as compared to brick wall building in India. International Journal of Advanced Engineering Research and Studies E-ISSN2249–8974. 2014.
  22. Minke, G. (2006). Building with Earth Desing and Technology of a Sustainable Architecture. Birkhauser-Publishers for Architecture, Berlin. 198p.
  23. Mohammad, Dr. S., Al-Homoud. (2005). Performance characteristics and practical applications of common building thermal insulation materials. Building and Environment 40 (2005) 353-366.
  24. Morony, J. J. (2004). Adobe and latent heat, a cristal connection. Biology Deparment Southwest Texas Junior College, 12-34.
  25. Neves, C., Borges, O.F. (2011). Técnicas de Construcción con Tierra. Bauru, Brasil.: Red Iberoamericana Proterra.
  26. Pacheco - Torgal, F., & Jalali, S. (2012). Earth construction: Lessons from the past for future eco-efficient construction. Construction and Building Materials, 29, 512–519. http://doi.org/10.1016/j.conbuildmat.2011.10.054
  27. Praseeda, K. I., Reddy, B. V. V., & Mani, M. (2015). Embodied energy assessment of building materials in India using process and input–output analysis. Energy and Buildings, 86, 677–686. http://doi.org/10.1016/j.enbuild.2014.10.042
  28. Parra-Saldivar, M.,Batty, W. (2006). Thermal behaviour of adobe construccion. Building and environment 41(2006) 1892-1904.
  29. Shukla, A., Tiwari, G. N., & Sodha, M. S. (2009). Embodied energy analysis of adobe house. Renewable Energy, 34(3), 755–761. http://doi.org/10.1016/j.renene.2008.04.002
  30. Khudhair, A. M., Farid, M. M. (2004). A review on energy conservation in buildingapplications with thermal storage by latent heat using phase change materials. Energy Conversion and Management 45(2004) 263-275.
  31. Taylor, P., Fuller, R. J., Luther, M. B. (2008). Energy use and thermal comfort in a rammed earth office building. Energy and Building 40 (2008) 793-800.
  32. Wu, J., Bai, G.-l., Zhao, H.-y., & Li, X. (2015). Mechanical and thermal tests of an innovative environment-friendly hollow block as self-insulation wall materials. CONSTRUCTION & BUILDING MATERIALS, 93, 342-349. https://doi.org/10.1016/j.conbuildmat.2015.06.003
  33. V. Sharma, H.K. Vinayak, and B.M. Marwaha. (2015). Enhancing sustainability of rural adobe houses of hills by addition of vernacular fiber reinforcement. International Journal of Sustainable Built Environment. 4(2): p. 348-358.
  34. Yang X, Qin FGF, Jiang R. (2014). Experimental investigation of a molten salt thermocline storage tank. Int J Sustain Energy.1–9.
  35. Young, H. D., Freedman, R.A. (2009). Física Universitaria (Vol. I). México Pearson Educación.
  36. Zhang, J., Xu, W., Li, A., Zheng, K., & Zhang, J. (2016). Study on improving thermal environment and energy conservation of quadrangle adobe dwelling. Energy and Buildings, 129, 92–101. http://doi.org/10.1016/j.enbuild.2016.07.048