Vol. 27 (2025): Publicación continua
Artículo original

Conexiones geoquímicas entre suelos y sedimentos en la microcuenca de Umayo mediante análisis multivariado y factores de enriquecimiento

Dante Aatilio Salas-Ávila
Escuela Profesional de Ingeniería Metalúrgica, Universidad Nacional del Altiplano de Puno, Puno, Perú
Luis David Lipa-Quispe
Escuela Profesional de Ingeniería Metalúrgica, Universidad Nacional del Altiplano de Puno, Puno, Perú.
Kelly Patricia Huillca-Cruz
Escuela Profesional de Ingeniería Metalúrgica, Universidad Nacional del Altiplano de Puno, Puno, Perú.
Nelson Meier Humalla Lopez
Escuela profesional de Geología, Universidad Central de Chile, Santiago de Chile, Chile
Cristian C Leqque-Valenzuela
Escuela Profesional de Ingeniería Metalúrgica, Universidad Nacional del Altiplano de Puno, Puno, Perú.
Nesareth Fuentes-Mamani
Escuela Profesional de Ingeniería Geológica, Universidad Nacional del Altiplano de Puno, Puno, Perú.
Julio Pedro Quispe Aymachoque
Escuela Profesional de ciencias Físico-Matemáticas, Universidad Nacional del Altiplano de Puno, Puno, Perú
Andrea Susana Vargas Trinidad
CHANGINS, University of Applied Sciences and Arts Western Switzerland (HES-SO), Nyon, Switzerland.

Publicado 23-12-2025

Palabras clave

  • Contaminación del agua,
  • Elementos químicos,
  • geoquímica,
  • recursos del suelo,
  • Sedimentos

Cómo citar

Salas-Ávila, D. A., Lipa-Quispe, L. D., Huillca-Cruz, K. P., Humalla Lopez, N. M. ., Leqque Valenzuela, C. C., Fuentes Mamani, N., Quispe Aymachoque, J. P., & Vargas Trinidad, . A. S. (2025). Conexiones geoquímicas entre suelos y sedimentos en la microcuenca de Umayo mediante análisis multivariado y factores de enriquecimiento. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 27, e27753. https://doi.org/10.18271/ria.2025.753

Resumen

El objetivo de este estudio fue evaluar la contaminación por metales pesados en sedimentos fluviales, lacustres y suelos circundantes a la laguna Umayo, a fin de identificar sus posibles fuentes. Se recolectaron muestras en diferentes puntos, fueron secadas, tamizadas y digeridas ácidamente, y el análisis de metales se realizó mediante espectrometría de emisión óptica con plasma acoplado inductivamente. Se aplicaron el factor de enriquecimiento, análisis de correlación y componentes principales para determinar el grado de contaminación y las asociaciones entre elementos. Los valores más altos se registraron para Hg (hasta 2,35 mg/kg) y Cd (hasta 4,82 mg/kg), superando los niveles permisibles de la normativa canadiense. El EF indicó enriquecimiento significativo a muy alto para Hg y Cd en sedimentos aguas abajo de actividades mineras y lácteas. El PCA agrupó a Hg, Cd y Pb con puntos asociados a fuentes antrópicas, mientras que Cr, Ni y Zn mostraron patrones de origen natural. Estos resultados evidencian un impacto relevante de las actividades humanas en la cuenca, con implicaciones para la gestión ambiental y la calidad del ecosistema lacustre.

Referencias

  1. Ahmad, N., Singh, S. P., Sahu, S., Bhattacharyya, R., Maurya, A. S., Kumar, N., Rout, R. K., & Tripathy, G. R. (2024). Isotopic evidence of autochthonous organic matter acting as a major sink of anthropogenic heavy metals in modern lacustrine sediments. Environmental Pollution, 349. https://doi.org/10.1016/j.envpol.2024.123964
  2. ANA. (2016). Protocolo Nacional para el Monitoreo de la Calidad de los Recursos Hídricos Superficiales.
  3. Ateş, A., Demirel, H., Köklü, R., Çetin Doğruparmak, Ş., Altundağ, H., & Şengörür, B. (2020). Seasonal Source Apportionment of Heavy Metals and Physicochemical Parameters: A Case Study of Sapanca Lake Watershed. Journal of Spectroscopy, 2020, 1–11. https://doi.org/10.1155/2020/7601590
  4. Autoridad Nacional del Agua (ANA). (1979). Levantamiento geotecnico con fines de represamiento de la Laguna Umayo (Vol. 0, Issue 1). https://repositorio.ana.gob.pe/handle/20.500.12543/4434
  5. Belizario, G., Capacoila, J., Huaquisto, E., Cornejo, D. A., & Chui, H. N. (2019). Determinación del contenido de fosforo y arsenico, y de otros metales contaminantes de las aguas superficiales del río Coata, afluentes del Lago Titicaca, Perú. Rev. Boliv. Quim., 36(5), 223–228. https://doi.org/10.34098/2078-3949.36.5.4
  6. Bhutiani, R., Khanna, D. R., Tyagi, B., Tyagi, P., & Kulkarni, D. (2015). Assessing environmental contamination of River Ganga using correlation and multivariate analysis. University of Tehran, 1(3), 265–273. https://jpoll.ut.ac.ir/article_53929.html%0Ahttp://jpoll.ut.ac.ir/article_53929.html
  7. Cáceres Obada, M. C., Zegarra Oliveira, M. E. F., Meza Elguera, N. Y., Sosa Pulcha, S. E., Portocarrero Banda, A. A., Quispe Ortiz, J. A., Salinas Murillo, V., & Jiménez Pacheco, H. G. (2025). Assessment of heavy metal contamination in surface sediments: Seasonal influence in the Majes-Camaná basin of the Arequipa region, Peru. Results in Engineering, 25. https://doi.org/10.1016/j.rineng.2024.103673
  8. Chirenje, T., Ma, L. Q., Reeves, M., & Szulczewski, M. (2004). Lead distribution in near-surface soils of two Florida cities: Gainesville and Miami. Geoderma, 119(1–2), 113–120. https://doi.org/10.1016/S0016-7061(03)00244-1
  9. Correa, M., Bolaños, M., Rebolledo, E., Rubio, D., & Salinas, E. (2015). Análisis del contenido de metales en aguas, sedimentos y peces en la cuenca del río Santiago, provincia de Esmeraldas, Ecuador. Investigaciones y Saberes, 4(2), 32–42.
  10. Custodio, M., Fow, A., De la Cruz, H., Chanamé, F., & Huarcaya, J. (2023). Potential ecological risk from heavy metals in surface sediment of lotic systems in central region Peru. Frontiers in Water, 5. https://doi.org/10.3389/frwa.2023.1295712
  11. Estándares de Calidad Ambiental Para Suelo (ECA), El Peruano (2017). http://www.minam.gob.pe/wp-content/uploads/2017/12/DS_011-2017-MINAM.pdf
  12. Gobierno Regional de Puno (GRP). (2015). INFORME FINAL DEL ÁREA DE GEOLOGÍA REGION PUNO.
  13. Gomes, M. V. T., Costa, A. S., Garcia, C. A. B., Passos, E. A., & Do Patrocínio Hora Alves, J. (2010). Concentrações e associações geoquímicas de Pb e Zn em sedimentos do rio São Francisco impactados por rejeitos da produção industrial de zinco. Quimica Nova, 33(10), 2088–2092. https://doi.org/10.1590/S0100-40422010001000016
  14. Gradilla-Hernández, M. S., de Anda, J., Garcia-Gonzalez, A., Meza-Rodríguez, D., Yebra Montes, C., & Perfecto-Avalos, Y. (2020). Multivariate water quality analysis of Lake Cajititlán, Mexico. Environmental Monitoring and Assessment, 192(1). https://doi.org/10.1007/s10661-019-7972-4
  15. Kim, C. S., Kim, S. H., Lee, W. C., & Lee, D. H. (2022). Spatial variability of water quality and sedimentary organic matter during winter season in coastal aquaculture zone of Korea. Marine Pollution Bulletin, 182. https://doi.org/10.1016/j.marpolbul.2022.113991
  16. Kouame, L. B. C., Bolou Bi, E. B., Aka, N., Alphonse, V., Goula, B. T. A., & Balland-Bolou-Bi, C. (2020). Seasonality of Hg dynamics in the Ebrié Lagoon (Côte d’Ivoire) ecosystem: influence of biogeochemical factors. Environmental Science and Pollution Research, Fiston 2017. https://doi.org/10.1007/s11356-020-08471-3
  17. Liu, P., Zheng, C., Wen, M., Luo, X., Wu, Z., Liu, Y., Chai, S., & Huang, L. (2021). Ecological risk assessment and contamination history of heavy metals in the sediments of chagan lake, northeast china. Water (Switzerland), 13(7). https://doi.org/10.3390/w13070894
  18. Maldonado, I., Miranda-Mamani, J., & Paredes-Espinal, C. (2023). Heavy metals and ecological alterations resulting from wastewater discharge in Inner Puno Bay, Lake Titicaca. Environmental Nanotechnology, Monitoring and Management, 20. https://doi.org/10.1016/j.enmm.2023.100903
  19. Ministerio de Comercio Exterior y Turismo (MINCETUR). (2023). Isla Umayo. https://consultasenlinea.mincetur.gob.pe/fichaInventario/index.aspx?cod_Ficha=11802&utm_source=chatgpt.com
  20. Miserendino, R. A., Bergquist, B. A., Adler, S. E., Guimarães, J. R. D., Lees, P. S. J., Niquen, W., Velasquez-López, P. C., & Veiga, M. M. (2013). Challenges to measuring, monitoring, and addressing the cumulative impacts of artisanal and small-scale gold mining in Ecuador. Resources Policy, 38(4), 713–722. https://doi.org/10.1016/J.RESOURPOL.2013.03.007
  21. Morales-Simfors, N., Bundschuh, J., Herath, I., Inguaggiato, C., Caselli, A. T., Tapia, J., Choquehuayta, F. E. A., Armienta, M. A., Ormachea, M., Joseph, E., & López, D. L. (2020). Arsenic in Latin America: A critical overview on the geochemistry of arsenic originating from geothermal features and volcanic emissions for solving its environmental consequences. Science of the Total Environment, 716(November 2019), 135564. https://doi.org/10.1016/j.scitotenv.2019.135564
  22. Pérez-Portilla, P., Aránguiz-Acuña, A., Pizarro, H., Maldonado, A., Herrera, J., & Tapia, J. (2024). Assessing the effects of long-term mining exploitation on a lacustrine system from the arid region of the Atacama Desert, Chile. Science of the Total Environment, 949. https://doi.org/10.1016/j.scitotenv.2024.174771
  23. Pesantes, A. A., Carpio, E. P., Vitvar, T., López, M. M. M., & Menéndez-Aguado, J. M. (2019). A multi-index analysis approach to heavy metal pollution assessment in river sediments in the Ponce Enríquez Area, Ecuador. Water (Switzerland), 11(3). https://doi.org/10.3390/w11030590
  24. Quino Lima, I., Ramos Ramos, O. E., Ormachea Muñoz, M., Chambi Tapia, M. I., Quintanilla Aguirre, J., Ahmad, A., Maity, J. P., Islam, M. T., & Bhattacharya, P. (2021). Geochemical mechanisms of natural arsenic mobility in the hydrogeologic system of lower Katari Basin, Bolivian Altiplano. Journal of Hydrology, 594. https://doi.org/10.1016/j.jhydrol.2020.125778
  25. Rivera, C. A., Letelier, J. A., Acevedo, B., Tobar, T. D. P., Torres, C. L., Cataldo, A. M., Rudolph, A., & Rivera, M. Á. (2020). Calidad del agua del estero El Sauce, Valparaíso, Chile Central. Revista Internacional de Contaminación Ambiental, 36(2), 261–273. https://doi.org/10.20937/rica.53465
  26. Rydberg, J., Rosén, P., Lambertsson, L., De Vleeschouwer, F., Tomasdotter, S., & Bindler, R. (2012). Assessment of the spatial distributions of total-and methyl-mercury and their relationship to sediment geochemistry from a whole-lake perspective. Journal of Geophysical Research G: Biogeosciences, 117(4), 1–13. https://doi.org/10.1029/2012JG001992
  27. Salas-ávila, D. (2021). Evaluación de metales pesados y comportamiento social asociados a la calidad del agua en el río Suches , Evaluation of heavy metals and social behavior associated a the water quality in the Suches River ,. 0, 1–34. https://doi.org/10.24850/j-tyca-2021-06-04
  28. Salas-Mercado, D., Belizario-Quispe, G., & Horna-Muñoz, D. (2023). Heavy Metal Pollution Assessment in Lake Rinconada in the Southern Andes, Peru. Pollution, 9(2), 477–493. https://doi.org/http://doi.org/10.22059/POLL.2022.346689.1558
  29. Salas-Mercado, D., Hermoza-Gutierrez, M., Belizario-Quispe, G., Chaiña, F., Quispe, E., & Salas-Ávila, D. (2022). Geochemical Indices for the Assessment of Chemical Contamination Elements in Sediments of the Suches River , Peru. Pollution, 8(2), 595–610. https://doi.org/810.22059/POLL.2021.331806.1205
  30. Salas-Mercado, D., Hermoza-Gutiérrez, M., Chaiña-Chura, F., Huaquisto-Cáceres, S., Hurtado-Chávez, E., Rojas-Chahuares, F., Quispe-Mamani, E., Salas-Ávila, D., & Belizario-Quispe, G. (2023). EVALUATION OF THE SEDIMENT QUALITY OF THE SUCHES RIVER USING MULTIVARIATE ANALYSIS METHODS. Revista Boliviana de Química, 40(2). https://doi.org/10.34098/2078-3949.40.2.2
  31. Salas-Mercado, D., Hermoza-Gutiérrez, M., & Salas-Ávila, D. (2020). Distribution of heavy metals and metaloids in surface waters and on sediments of the crucero river, Perú. Revista Boliviana de Química, 37(4), 185–193. https://doi.org/10.34098/2078-3949.37.4.1
  32. Sediment Quality Guidelines for the Protection of Aquatic Life, 4 (1998).
  33. Sepúlveda, L. D., Lecomte, K. L., Pasquini, A. I., Mansilla, E. G., & Chaparro, M. A. E. (2019). Propiedades geoquímicas y magnéticas de sedimentos como indicadores de contaminación. Caso de estudio: Río Suquía, Córdoba, Argentina. Revista Mexicana de Ciencias Geologicas, 36(2), 183–194. https://doi.org/10.22201/cgeo.20072902e.2019.2.1037
  34. Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. In Cases and solutions Environmental Geology (Vol. 39, Issue 6). Springer-Verlag.
  35. Swarnalatha, K., Letha, J., Ayoob, S., & Nair, A. G. (2015). Risk assessment of heavy metal contamination in sediments of a tropical lake. Environmental Monitoring and Assessment, 187(6), 1–14. https://doi.org/10.1007/s10661-015-4558-7
  36. Taheri Tizro, A., Voudouris, K., & Vahedi, S. (2014). Spatial Variation of Groundwater Quality Parameters: A Case Study from a Semiarid Region of Iran. International Bulletin of Water Resources & Development (IBWRD), 03.
  37. Tapia, J., Murray, J., Ormachea, M., Tirado, N., & Nordstrom, D. K. (2019). Origin, distribution, and geochemistry of arsenic in the Altiplano-Puna plateau of Argentina, Bolivia, Chile, and Perú. Science of the Total Environment, 678, 309–325. https://doi.org/10.1016/j.scitotenv.2019.04.084
  38. Ticona Carrizales, L., Ferró-Gonzales, P. F., Apaza-Panca, C. M., Parillo Sosa, E. G., Yapuchura Saico, C. R., & Rodríguez Chokewanca, I. R. (2021). Evaluation of environmental parameters in the Espinar Puno stabilization lagoon. Heliyon, 7(5). https://doi.org/10.1016/j.heliyon.2021.e06959
  39. Valladares-Faundez, P., Cáceres, G., & Valdés, J. (2020). Contenido de plomo, cadmio y arsénico en tejidos biológicos de la paloma común(Columba livia) presentes en un área urbana previamente contaminada con residuos mineros. Revista Internacional de Contaminación Ambiental, 36(2), 485–490. https://doi.org/10.20937/rica.53323
  40. Velásquez Ramírez, M. G., Barrantes, J. A. G., Thomas, E., Gamarra Miranda, L. A., Pillaca, M., Tello Peramas, L. D., & Bazán Tapia, L. R. (2020). Heavy metals in alluvial gold mine spoils in the peruvian amazon. Catena, 189(May 2019), 104454. https://doi.org/10.1016/j.catena.2020.104454
  41. Wang, K., Aji, D., Li, P., & Hu, C. (2024). Characterization of heavy metal contamination in wetland sediments of Bosten lake and evaluation of potential ecological risk, China. Frontiers in Environmental Science, 12. https://doi.org/10.3389/fenvs.2024.1398849
  42. Wang, L. F., Yang, L. Y., Kong, L. H., Li, S., Zhu, J. R., & Wang, Y. Q. (2014). Spatial distribution, source identification and pollution assessment of metal content in the surface sediments of Nansi Lake, China. Journal of Geochemical Exploration, 140, 87–95. https://doi.org/10.1016/j.gexplo.2014.02.008
  43. Wang, T., Liu, J., Xu, S., Qin, G., Sun, Y., & Wang, F. (2017). Spatial Distribution, Adsorption/Release Characteristics, and Environment Influence of Phosphorus on Sediment in Reservoir. Water, 9(9), 724. https://doi.org/10.3390/w9090724
  44. Webb, N. P., Kachergis, E., Miller, S. W., McCord, S. E., Bestelmeyer, B. T., Brown, J. R., Chappell, A., Edwards, B. L., Herrick, J. E., Karl, J. W., Leys, J. F., Metz, L. J., Smarik, S., Tatarko, J., Van Zee, J. W., & Zwicke, G. (2020). Indicators and benchmarks for wind erosion monitoring, assessment and management. Ecological Indicators, 110(August 2019), 105881. https://doi.org/10.1016/j.ecolind.2019.105881
  45. Yacoub, C., Miralles, N., & Valderrama, C. (2015). Experimental Study of Mobility and Kinetic Characterization of Trace Elements in Contaminated Sediments from a River Basin in Northern Peru. Human and Ecological Risk Assessment, 21(3), 828–844. https://doi.org/10.1080/10807039.2014.939571
  46. Yang, H. J., Jeong, H. J., Bong, K. M., Jin, D. R., Kang, T. W., Ryu, H. S., Han, J. H., Yang, W. J., Jung, H., Hwang, S. H., & Na, E. H. (2020). Organic matter and heavy metal in river sediments of southwestern coastal Korea: Spatial distributions, pollution, and ecological risk assessment. Marine Pollution Bulletin, 159(July), 111466. https://doi.org/10.1016/j.marpolbul.2020.111466
  47. Yuan, P., Wu, X., Xia, Y., Peng, C., Tong, H., Liu, J., Jiang, L., & Wang, X. (2020). Spatial and seasonal variations and risk assessment for heavy metals in surface sediments of the largest river-embedded reservoir in China. Environmental Science and Pollution Research, 27(28), 35556–35566. https://doi.org/10.1007/s11356-020-09868-w
  48. Zingaro, M., Refice, A., Giachetta, E., D’Addabbo, A., Lovergine, F., De Pasquale, V., Pepe, G., Brandolini, P., Cevasco, A., & Capolongo, D. (2019). Sediment mobility and connectivity in a catchment: A new mapping approach. Science of the Total Environment, 672, 763–775. https://doi.org/10.1016/j.scitotenv.2019.03.461