Vol. 20 No. 4 (2018)
Original articles

Cryo-X-ray tomography (Cryo-XT) of viral factories in cells infected with Vaccinia virus

José Antonio Moreno-Serrano
Complutense University of Madrid Spain
Tulio F. Solano Castillo
Complutense University of Madrid Spain

Published 2018-10-29

Keywords

  • Vaccinia virus,
  • cryo-X,
  • ray tomography,
  • viral factory,
  • actin filaments

How to Cite

Moreno-Serrano, J. A. ., & Solano Castillo, T. F. . (2018). Cryo-X-ray tomography (Cryo-XT) of viral factories in cells infected with Vaccinia virus. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 20(4), 409-418. https://doi.org/10.18271/ria.2018.418

Abstract

VV (Vaccinia virus) is one of the most complex viruses, with a size greater than 300 nm and more than 100 structural proteins. Its assembly involves sequential interactions and important rearrangements of its structural components. The BSC40 cells were infected and then selected by light fluorescence microscopy and subsequently imaged under the X-ray microscope under cryogenic conditions. Tomographic tilt series of X-ray images were used to produce three-dimensional reconstructions showing different cellular organelles (nuclei, mitochondria, RE), together with two other types of viral particles related to different stages of immature vaccinia (IV) maturation and (MV) mature particles; tests with witaferin showed links with actin, which prevents polymerization and elongation of the filaments; causing poorly packaged or aberrant virions, which inhibits the progression of the viral infection. The findings demonstrate that X-ray cryo-tomography is a powerful tool to collect three-dimensional structural information from frozen whole cells, unfixed and without spots with sufficient resolution to detect different virus particles that exhibit different levels of maturation.

 

References

  1. Agulleiro, J., & Fernandez, J. (2011). Fast tomographic reconstruction on multicore computers. Bioinformatics, 27(4), 582–583. doi: 10.1093/bioinformatics/btq692
  2. Blasco, R., & Moss, B. (1992). Role of cell-associated enveloped vaccinia virus in cell-to-cell spread. Journal of virology, 66(7):4170–4179. Retrieved from http://jvi.asm.org/c ontent/ 66/7/417 0.full.pdf +ht ml
  3. Carlier, M.F., Laurent, V., Santolini, J., Melki, R., Didry, D., Xia, G.X., Hong, Y., Chua, N.H., & Pantaloni, D. (1997). Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. The Journal of cell biology, 136(6), 1307-1322. doi: 10.1083/jcb.136.6.1307
  4. Chao, W., Harteneck, B., Liddle, J., Anderson, E., & Attwood, D. (2005). Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature, 435(7046), 1210–1213. doi: 10.1038/nature03719
  5. Chichón, F., Rodríguez, M., Pereiro, E., Chiappi, M., Perdiguero, B., Guttmann, P., & Carrascosa, J. (2012). Cryo X-ray nano-tomography of vaccinia virus infected cells. Journal of structural biology, 177(2), 202–211. doi: 10.1016/j.jsb.2011.12.001
  6. Chichon, F., Rodriguez, M., Risco, C., Fraile-Ramos, A., Fernandez, J., Esteban, M., & Carrascosa, J. (2009). Membrane remodelling during vaccinia virus morphogenesis. Biology of the Cell, 101(7), 401-414. doi: 10.1042/BC20080176
  7. Cyrklaff, M., Linaroudis, A., Boicu, M., Chlanda, P., Baumeister, W., Griffiths, G., & Krijnse-Locker, J. (2007). Whole cell cryo-electron tomography reveals distinct. PLoS one, 2(5), e420. doi: 10.1371/journal.pone.0000420
  8. Cyrklaff, M., Risco, C., Fernandez, J., Jimenez, M., Esteban, M., Baumeister, W., & Carrascosa, J. (2005). Cryo-electron tomography of vaccinia virus. Proceedings of the National Academy of Sciences of the United States of America, 102(8), 2772-2777. doi: 10.1073/pnas.0409825102
  9. Dallo, S., Maa, J., Rodriguez, J., Rodriguez, D., & Esteban, M. (1989). Humoral immune response elicited by highly attenuated variants of vaccinia virus and by an attenuated recombinant expressing HIV-1 envelope protein. Virology, 173(1), 323-329. doi: 10.1016/0042-6822(89)90250-X
  10. Ding, S., Diep, J., Feng, N., Ren, L., Li, B., Ooi, Y. S., ... & Kuo, C. J. (2018). STAG2 deficiency induces interferon responses via cGAS-STING pathway and restricts virus infection. Nature communications, 9(1), 1485. doi: 10.1038/s41467-018-03782-z
  11. Esteban, M. (1984). Defective vaccinia virus particles in interferon-treated infected cells. Virology, 133(1), 220-227. doi: 10.1016/0042-6822(84)90443-4
  12. Frank, J. (Ed.). (2006). Electron Tomography: methods for three-dimensional visualization of structures in the cell. Springer Science & Business Media. Retrieved from https://books.google.es/books?hl=es&lr=&id=LWx6JKQy34AC&o i=fnd&pg=PA1&dq=Frank,+J.+(2006).+Electron+Tomography,+Methods+for+Three-dimensional+Visualization+of+Structures+in+the+Cell.+New+York:+Springer .&ots=RnRR_wlrIP&sig=IAQZUD6bquYLuaulwhvr0weoQvo#v=onepage&q=Frank%2C%20J.%20(2006).%20Electron%20Tomography%2C%20Methods%20for%20Three-dimensional%20Visualization%20of%20Structures%20in%20the%20Ce ll.%20New%20York%3A%20Springer.&f=false
  13. Galkin, V., Orlova, A., Vos, M., Schröder, G., & Egelman, E. (2015). Near-atomic resolution for one state of F-actin. Structure, 23, 173-182. doi: 10.1016/j.str.2014.11.006
  14. Gu, W., Etkin, L., Le-Gros, M., & Larabell, C. (2007). X-ray tomography of Schizosaccharomyces pombe. Differentiation, 75(6), 529–535. doi: 10.1111/j.1432-0436.2007.00180.x
  15. Guttmann, P., Zeng, X., Feser, M., Heim, S., Yun, W., & Schneider, G. (2009). Ellipsoidal capillary as condenser for the BESSY full-field X-ray microscope. In Journal of Physics: Conference Series (Vol. 186, No. 1, p. 012064). IOP Publishing. Retrieved from http://iopscience.iop.org/article/10.1088/17426596/ 186/1/012064/meta#artAbst
  16. Grossegesse, M., Doellinger, J., Fritsch, A., Laue, M., Piesker, J., Schaade, L., & Nitsche, A. (2018). Global ubiquitination analysis reveals extensive modification and proteasomal degradation of cowpox virus proteins, but preservation of viral cores. Scientific reports, 8(1), 1807. doi: 10.1038/s41598-018-20130-9
  17. Harkiolaki, M., Darrow, M. C., Spink, M. C., Kosior, E., Dent, K., & Duke, E. (2018). Cryo-soft X-ray tomography: using soft X-rays to explore the ultrastructure of whole cells. Emerging Topics in Life Sciences, 2(1), 81-92. doi: 10.1042/ETLS20170086
  18. Hobbs, S. J., Osborn, J. F., & Nolz, J. C. (2018). Activation and trafficking of CD8+ T cells during viral skin infection: immunological lessons learned from vaccinia virus. Current opinion in virology, 28, 12-19. doi: 10.1016/j.coviro.2017.10.001
  19. Hollinshead, M., Rodger, G., Van Eijl, H., Law, M., Hollinshead, R., Vaux, D., & Smith, G. (2001). Vaccinia virus utilizes microtubules for movement to the cell surface. Journal of Cell Biology, 154(2), 389-402. doi: 10.1083/jcb.200104124
  20. Huang, X., Li, S., & Gao, S. (2018). Exploring an optimal wavelet-based filter for cryo-ET imaging. Scientific reports, 8(1), 2582. doi: 10.1038/s41598-018-20945-6
  21. Jiménez-Lamana, J., Szpunar, J., & Łobinski, R. (2018). New Frontiers of Metallomics: Elemental and Species-Specific Analysis and Imaging of Single Cells. In Metallomics (pp. 245-270). Springer, Cham. doi: 10.1007/978-3-319-90143-5_10
  22. Katsafanas, G., & Moss, B. (2007). Colocalization of transcription and translation within cytoplasmic poxvirus factories coordinates viral expression and subjugates host functions. Cell Host Microbe, 2(4): 221–228. doi: 10.1016/j.chom.2007.08.005
  23. Kremer, J., Mastronarde, D., & McIntosh, J. (1996). Computer visualization of three-dimensional image data using IMOD. Journal of structural biology, 116(1), 71–76. doi: 10.1006/jsbi.1996.0013.
  24. Lau, C., Hunter, M. J., Stewart, A., Perozo, E., & Vandenberg, J. I. (2018). Never at rest: insights into the conformational dynamics of ion channels from cryo‐electron microscopy. The Journal of physiology, 596(7), 1107-1119.
  25. Lehmann, M., Sherer, N., Marks, C., Pypaert, M., & Mothes, W. (2005). Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. The Journal of cell biology, 170(2), 317-325. doi: 10.1083/jcb.200503059
  26. Liu, R., & Moss, B. (2018). Vaccinia Virus C9 Ankyrin Repeat/F-Box Protein Is a Newly Identified Antagonist of the Type I Interferon-Induced Antiviral State. Journal of virology, 92(9), e00053-18. doi: 10.1128/JVI.00053-18
  27. Maurer, U. E., Sodeik, B., & Grünewald, K. (2008). Native 3D intermediates of membrane fusion in herpes simplex virus 1 entry. Proceedings of the National Academy of Sciences, 105(30), 10559-10564. doi: 10.1073/pnas.0801674105
  28. Moss, B. (2007). Poxviridae: The viruses and their replication (Knipe DM, Howley PM ed.). Philadelphia: Lippincott Williams & Wilkins. p. 2905-2946.
  29. Mueller, J., Pfanzelter, J., Winkler, C., Narita, A., Le Clainche, C., Nemethova, M., Carlier, M.F., Maeda, Y., Welch, M.D., Ohkawa, T., & Schmeiser, C. (2014). Electron tomography and simulation of baculovirus actin comet tails support a tethered filament model of pathogen propulsion. PLoS biology, 12(1), e1001765. doi: 10.1371/journal.pbio.1001765
  30. Parkinson, D., McDermott, G., Etkin, L., Le-Gros, M., & Larabell, C. (2008). Quantitative 3D imaging of eukaryotic cells using soft X-ray tomography. Journal of structural biology, 162(3), 380-386. doi: 10.1016/j.jsb.2008.02.003
  31. Ploubidou, A., Moreau, V., Ashman, K., Reckmann, I., González, C., & Way, M. (2000). Vaccinia virus infection disrupts microtubule organization and centrosome function. The EMBO journal, 19(15), 3932-3944. doi: 10.1093/emboj/19.15.3932
  32. Rodriguez, D., Barcena, M., Mobius, W., Schleich, S., Esteban, M., Geerts, W. Locker, J. (2006). A vaccinia virus lacking A10L: viral core proteins accumulate on structures derived from the endoplasmic reticulum. Cellular microbiology, 8(3), 427-437. doi: 10.1111/j.1462-5822.2005.00632.x
  33. Schneider, G. (1998). Cryo X-ray microscopy with high spatial resolution in amplitude and phase contrast. Ultramicroscopy, 75(2), 85–104. doi: 10.1016/S0304-3991(98)000 54-0
  34. Schneider, G., Guttmann, P., Heim, S., Rehbein, S., Eichert, D., & Niemann, B. (2007, January). X‐Ray Microscopy at BESSY: From Nano‐Tomography to Fs‐Imaging. In AIP Conference Proceedings (Vol. 879, No. 1, pp. 1291-1294). AIP. doi: 10.1063/1.2436300
  35. Schramm, B., & Krijnse-Locker, J. (2005). Cytoplasmic organization of poxvirus DNA replication. Traffic, 6(10), 839–846. doi: 10.1111/j.1600-0854.2005.00324.x
  36. Small, J. (2015). Pushing with actin: from cells to pathogens. Biochemical Society Transactions, 43, 84-91.
  37. Tolonen, N., Doglio, L., Schleich, S., & Krijnse-Locker, J. (2001). Vaccinia virus DNA replication occurs in endoplasmic reticulum-enclosed cytoplasmic mini-nuclei. Molecular biology of the cell, 12(7), 2031-2046. doi: 10.1091/mbc.12.7.2031
  38. Zeng, X., Duewer, F., Feser, M., Huang, C., Lyon, A., Tkachuk, A., & Yun, W. (2008). Ellipsoidal and parabolic glass capillaries as condensers for X-ray microscopes. Applied optics, 47(13), 2376-2381. doi: 10.1364/AO.47.002376
  39. Zong, C., Xu, M., Xu, L. J., Wei, T., Ma, X., Zheng, X. S., ... & Ren, B. (2018). Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chemical reviews, 118(10), 4946-4980. doi: 10.1021/acs.chemrev.7b00668