Vol. 23 No. 2 (2021)
Letters to the Editor

Latent environmetal damage: lagoon of Huacachina, Ica (Peru)

george argota pérez
Centro de Investigaciones Avanzadas y Formación Superior en Educación, Salud y Medio Ambiente ¨AMTAWI¨
Español
Español

Published 2021-04-15

Keywords

  • Español

How to Cite

argota pérez, george, & Español, E. (2021). Latent environmetal damage: lagoon of Huacachina, Ica (Peru). Revista De Investigaciones Altoandinas - Journal of High Andean Research, 23(2), 111-114. https://doi.org/10.18271/ria.2021.282

Abstract

Heritage areas with tourist attractions that offer ecosystem services must be systematically evaluated for their preservation. The objective of the manuscript addressed to the Editor describes the latent environmental damage in the Huacachina lagoon, Ica-Peru. The contact and physical pressure of the dune on the containment barriers was observed, which could prevent the recreation of passers-by in the future. Likewise, an excessive density of the Scirpus californicus species, which is an indicator of the poor quality of the water and which is corroborated by the high turbidity.

References

  1. Argota, P. G., Moreno, T. E. G. y Iannacone, O. (2019). Costo ambiental sostenible relativo con agregación de biomarcadores para la estimación de la calidad ambiental en ecosistemas acuáticos. The Biologist (Lima); 17(2), 295-305. https://doi.10.24039/rtb2019172365
  2. Argota, P. G., Argota, C. H. y Iannacone, O. (2016). Costo ambiental sostenible relativo a la variabilidad físico-química de las aguas sobre la disponibilidad de metales en el ecosistema San Juan, Santiago de Cuba-Cuba. The Biologist (Lima), 14, 219-232. https://doi.10.24039/rtb2019172365
  3. Bengtsson, P.J., Kristiansson, E. y Larsson, D. G. (2018). Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiological Reviws; 42, 1-41. https://doi.org/10.1093/femsre/fux053
  4. Briscoe, J. (2015). Water security in a changing world. Daedalus; 144, 27-34. https://doi.10.1162/DAED_a_00339
  5. Chen, F., Li, H. y Zhang, A. (2019). Ecological risk assessment based on terrestrial ecosystem services in China. Acta Geographica Sinica; 74(3), 432-445. https://doi.10.11821/dlxb201903003
  6. Decreto Supremo No. 008: Ministerio del Ambiente. (2014). Establecen la desafectación de la zona reservada laguna de Huacachina y el área de conservación regional laguna de Huacachina. El Peruano, 7 de agosto de 2014. Consultado: 25 de septiembre de 2020. http://www.minam.gob.pe/wp-content/uploads/2014/08/DS-008-2014-MINAM.pdf
  7. Dimitrakopoulos, P. G. y Troumbis, A. Y. (2019). Biotopos. En B. Fath (Ed.), Enciclopedia de la ecología (359-365). Elsevier. https://doi.10.1016/b978-0-12-409548-9.10923-6
  8. Dixit, R., Wasiullah, Malaviya, D., Pandiyan, K., Singh, U.B., Sahu, A., Shuka, R., Singh, B.P., Rai, J.P., Kumar, S.P., Lade, H. y Paul, D. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability, 7, 2189-2212. https://doi.10.3390/su7022189
  9. Elleuch, B., Bouhamed, F., Elloussaief, M. y Jaghbir, M. (2018). Environmental sustainability and pollution prevention. Environ. Sci. Pollut. Res; 25, 18223-18225. https://doi.10.1007/s11356-017-0619-5
  10. Escomel, E. (1936). Notas Biológicas sobre la Laguna medicinal de Huacachina, Perú. Revista Chilena de Historia Natural, 40, 139-143. http://rchn.biologiachile.cl/pdfs/1936/1/Escomel_1936.pdf
  11. Escobar-Mamani, F., Branca, D. y Haller, A. (2020). Investigación de montaña sobre y para la región andina. Revista de Investigaciones Altoandinas, 22(4), 311–312. https://doi.org/10.18271/ria.2020.191
  12. Escobar-Mamani, F. y Pulido Capurro, V. (2021). Biodiversidad y viajeros científicos: una visión desde los Andes. Revista de Investigaciones Altoandinas, 23(1), 5–9. https://doi.org/10.18271/ria.2021.238
  13. Fischer, K. I. (2018). How people value biodiversity in urban landscapes: assessing the people-nature interaction in cities. Landscape Planning, Management and Rehabilitation; 5(13), 66-69. https://doi.10.25680/9319.2018.25.36.359
  14. Gomes, W. I., Silva, J. A., Paiva, F. F., Milesi, S. V. y Molozzi, J. (2018). Functional attributes of Chironomidae for detecting anthropogenic impacts on reservoirs: a biomonitoring approach. Ecol. Indic; 93, 404-410. https://doi.org/10.1016/j.ecolind.2018.05.006
  15. Gómez, S., Salazar, C. y Longo, M. (2016). Diversidad y biomasa de macroinvertebrados asociados acuatro tipos de sustratos en la laguna La Virginia, páramo Sumapaz, Colombia. Biota Colombiana; 17(2), 20-38. https://doi.org/10.21068/c2016v17s02a02
  16. Haller, A. y Branca, D. (2020). Montología: una perspectiva de montaña hacia la investigación transdisciplinaria y el desarrollo sustentable. Revista de Investigaciones Altoandinas, 22(4), 313–332. https://doi.org/10.18271/ria.2020.193
  17. Luo, K., Hu, X., He, Q., Wu, Z., Cheng, H., Hu, Z. y Mazumder, A. (2018). Impacts of rapid urbanization on the water quality and macroinvertebrate communities of streams: a case study in Liangjiang New Area. China. Science of the Total Environment; 621, 1601-1614. https://doi.10.1016/j.scitotenv.2017.10.068
  18. Paz Soldán, M. y Paz Soldán, M. F. 1862. Geografía del Perú: obra póstuma. Librería de Fermín Didot.
  19. Shortle, J. (2013). Economic and Environmental markets: Lessons from Water-quality trading. Agricultural and Resource Economics Review; 42, 57-74. https://doi.10.1017/S1068280500007619
  20. Stefanidis, K., Panagopoulos, Y. y Mimikou, M. (2016). Impact assessment of agricultural driven stressors on benthic macroinvertebrates using simulated data. Science of the Total Environment; 540, 32-42. https://doi.10.1016/j.scitotenv.2015.08.015
  21. Suzuki, J., Imamura, M., Nakano, D., Yamamoto, R. y Fujita, M. (2018). Effects of water turbidity and different temperatures on oxidative stress in caddisfly (Stenopsyche marmorata) larvae. Science of the Total Environment; 630, 1078-1085. https://doi.10.1016/j.scitotenv. 2018.02.286