Vol. 27 (2025)
Original articles

Fungicide susceptibility of Colletotrichum species causing anthracnose on yam

Jhoandys Royet Barroso
Facultad de Ciencias Agrícolas, Universidad de Córdoba, Montería, Colombia.
Rodrigo Orlando Campo Arana
Facultad de Ciencias Agrícolas, Universidad de Córdoba, Montería, Colombia.

Published 2025-05-08

Keywords

  • Chemical control,
  • Dioscorea alata,
  • Dioscorea rotundata,
  • lethal dose 50

How to Cite

Royet Barroso, J., & Campo Arana, R. O. (2025). Fungicide susceptibility of Colletotrichum species causing anthracnose on yam. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 27, e27671. https://doi.org/10.18271/ria.2025.671

Abstract

Yam (Dioscorea spp.) is a crucial tuber for food security in tropical regions. However, its production is severely affected by anthracnose (Colletotrichum spp.), with losses exceeding 80%. Although chemical fungicides are used for its management, their effectiveness in control is limited. Despite the relevance of yam cultivation, there is a lack of studies evaluating the sensitivity of Colletotrichum isolates causing anthracnose to chemical synthesis fungicides. This research aimed to determine the in vitro sensitivity of Colletotrichum spp. isolates causing yam anthracnose to chemical fungicides. The assay was conducted under a completely randomized design with a factorial arrangement that included 10 isolates, six fungicides, and four doses. The agar diffusion technique was used to measure the percentage of mycelial growth inhibition, and the median lethal dose (LD50) was used to classify isolate sensitivity to fungicides. Azoxystrobin, captan, and chlorothalonil fungicides proved to be the most effective, with mycelial growth inhibition of 76.8%, 75.5%, and 73.2%, respectively. On the other hand, difenoconazole, mancozeb, and benomyl showed inhibition of 52.24%, 41.44%, and 29.22%, respectively. Additionally, resistance of some isolates to these commonly used molecules in the field was observed. It is concluded that the management of yam anthracnose should be approached under an integrated management approach, allowing for proper selection of fungicides.

References

  1. Andres, C., AdeOluwa, O., Bhullar, G. (2017). Yam (Dioscorea spp.). In: Thomas, B., Murray, B., Murphy, D. (Eds.). Encyclopedia of Applied Plant Sciences. Vol 3. pp. 435-441. Second Edition. Waltham, MA: Academic Press. 1706p. https://doi.org/10.1016/B978-0-12-394807-6.00177-5
  2. Andriani, D., Wiyono, S., Widodo, W. (2017). Sensitivitas Colletotrichum spp. pada Cabai terhadap Benomil, Klorotalonil, Mankozeb, dan Propineb. Jurnal Fitopatologi Indonesia. 13(4): 119-119. doi: https://doi.org/10.14692/jfi.13.4.119
  3. Arce, C., Varela, I., Torres, S. (2019). Inhibición del crecimiento micelial de hongos asociados a antracnosis en ñame (Dioscorea alata). Agronomía Mesoamericana. 30(2): 381-393. doi:10.15517/am.v30i2.32653
  4. Archana, S., Raguchander, T., Prabakar, K. (2018). Detection of β-tubulin gene from benomyl sensitive isolates of Colletotrichum gloeosporioides causing anthracnose disease in mango. African Journal of Microbiology Research. 12(33): 806-814. doi: 10.5897/AJMR2017.8688
  5. Baggio, J., Wang, N, Peres, N., Amorim, L. (2018). Baseline sensitivity of Colletotrichum acutatum isolates from Brazilian strawberry fields to azoxystrobin, difenoconazole, and thiophanate-methyl. Tropical Plant Pathology. 43(6): 533-542. doi: https://doi.org/10.1007/s40858-018-0232-2
  6. Campo-Arana, R., Pérez-Polo, D. (2015). Efecto de la densidad de siembra y la fenología del ñame (Dioscorea spp.) sobre la antracnosis (Colletotrichum gloeosporioides). Fitopatología Colombiana. 39(2): 37-40.
  7. Campo-Arana, R.O., Royet-Barroso, J. (2020). La antracnosis del ñame y estrategias de manejo: una revisión. Temas Agrarios. 25(2): 190-201. doi: https://doi.org/10.21897/rta.v25i2.2458
  8. Castellanos, G., Jara, C., Mosquera, G. (2011). Guías Prácticas de Laboratorio para el Manejo de Patógenos del Frijol. Centro Internacional de Agricultura Tropical. Publicación CIAT No. 375. Retrieved from https://hdl.handle.net/10568/54435
  9. Chechi, A., Stahlecker, J., Dowling, M., Schnabel, G. (2019). Diversity in species composition and fungicide resistance profiles in Colletotrichum isolates from apples. Pesticide biochemistry and physiology. 158: 18-24. doi: https://doi.org/10.1016/j.pestbp.2019.04.002
  10. Chen, F., Tsuji, S., Li, Y., Hu, M., Bandeira, M., Câmara, M., Schnabel, G. (2020). Reduced sensitivity of azoxystrobin and thiophanate-methyl resistance in Lasiodiplodia theobromae from papaya. Pesticide biochemistry and physiology. 162: 60-68. doi: https://doi.org/10.1016/j.pestbp.2019.08.008
  11. Chen, S., Luo, C., Hu, M., Schnabel, G. (2016). Sensitivity of Colletotrichum species, including C. fioriniae and C. nymphaeae, from peach to demethylation inhibitor fungicides. Plant disease. 100(12): 2434-2441. doi: https://doi.org/10.1094/PDIS-04-16-0574-RE
  12. Chen, S., Wang, Y., Schnabel, G., Peng, C., Lagishetty, S., Smith, K., Yuan, H. (2018). Inherent resistance to 14α-demethylation inhibitor fungicides in Colletotrichum truncatum is likely linked to CYP51A and/or CYP51B gene variants. Phytopathology. 108(11): 1263-1275. doi: https://doi.org/10.1094/PHYTO-02-18-0054-R
  13. Chen, X., Dai, D., Zhao, S., Shen, Y., Wang, H., Zhang, C. (2020). Genetic Diversity of Colletotrichum spp. Causing Strawberry Anthracnose in Zhejiang, China. Plant Disease. 104(5): 1351-1357. doi: https://doi.org/10.1094/PDIS-09-19-2026-RE
  14. Darkwa, K., Olasanmi, B., Asiedu, R., Asfaw, A. (2020). Review of empirical and emerging breeding methods and tools for yam (Dioscorea spp.) improvement: Status and prospects. Plant Breeding. 139(3): 474-497. doi: https://doi.org/10.1111/pbr.12783
  15. Dhavale, R.; Mulekar, V.; Jaiswal, K.; Bhosale, A.; Rothe, A. (2019). In vitro evaluation of non-systemic fungicides against Colletotrichum gloeosporioides causing fruit rot in banana. Journal of Pharmacognosy and Phytochemistry. 8(5): 1486-1488.
  16. Dufour, D., Hershey, C., Hamaker, B., Lorenzen, J. (2021). Integrating end‐user preferences into breeding programmes for roots, tubers and bananas. International Journal of Food Science & Technology. 56(3): 1071-1075. doi: https://doi.org/10.1111/ijfs.14911
  17. Espinoza, D., Silva, H., Leyva, S., Marbán, N., Rebollar, Á. (2017). Sensitivity of Colletotrichum acutatum isolates obtained from strawberry to tiophanate-methyl and azoxystrobin fungicides. Revista mexicana de fitopatología. 35(2): 186-203.
  18. Forcelini, B., Seijo, T., Amiri, A., Peres, N., (2016). Resistance in strawberry isolates of Colletotrichum acutatum from Florida to quinone-outside inhibitor fungicides. Plant Disease. 100(10): 2050-2056. doi: https://doi.org/10.1094/PDIS-01-16-0118-RE
  19. Gama, A., Baggio, J., Rebello, C., Lourenco, S., Gasparoto, M., da Silva Junior, G., Amorim, L. (2020). Sensitivity of Colletotrichum acutatum Isolates from Citrus to Carbendazim, Difenoconazole, Tebuconazole, and Trifloxystrobin. Plant disease. 104(6): 1621-1628. doi: https://doi.org/10.1094/PDIS-10-19-2195-RE
  20. Gatarira, C., Agre, P., Matsumoto, R., Edemodu, A., Adetimirin, V., Bhattacharjee, R., Asiedu, R., et al. (2020). Genome-Wide Association Analysis for Tuber Dry Matter and Oxidative Browning in Water Yam (Dioscorea alata L.). Plants: 9(8): 969. doi: http://dx.doi.org/10.3390/plants9080969
  21. Gaviria, V., Patiño, L., Saldarriaga, A. (2013). Evaluación in vitro de fungicidas comerciales para el control de Colletotrichum spp., en mora de castilla. Ciencia y Tecnología Agropecuaria. 14(1): 67-75. doi: https://doi.org/10.21930/rcta.vol14_num1_art:344
  22. Giorgio, T., Adler, L., Sandler, H. (2020). Colletotrichum Species Isolated from Massachusetts Cranberries Differ in Response to the Fungicide Azoxystrobin. Plant Health Progress. 21(2): 103-104. doi: https://doi.org/10.1094/PHP-10-19-0075-BR
  23. Guillén, D., Cadenas, C. I., Alia, I., López, V., Andrade, M., & Juárez, P. (2017). Inhibición colonial in vitro de un aislado de Colletotrichum acutatum Simmonds a tratamientos con fungicidas. Centro Agrícola. 44(4): 11-16.
  24. Han, Y., Zeng, X., Xiang, F., Zhang, Q., Cong, G., Chen, F., Gu, Y. (2018). Carbendazim sensitivity in populations of Colletotrichum gloeosporioides complex infecting strawberry and yams in Hubei Province of China. Journal of integrative agricultura. 17(6): 1391-1400. doi: https://doi.org/10.1016/S2095-3119(17)61854-9
  25. IDEAM. 2022. Consulta y Descarga de Datos Hidrometeorológicos. Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). Retrieved from http://dhime.ideam.gov.co/atencionciudadano/
  26. Jagtap, N., Ambadkar, C., Bhalerao, G. (2015). In vitro evaluation of different fungicides against Colletotrichum gloeosporioides causing anthracnose of pomegranate. International Journal of Agricultural Sciences. 11(2): 273-276.
  27. Katediya, M., Jaiman, R., Kumar, S. (2019). Management of chilli anthracnose caused by Colletotrichum capasici. Journal of Pharmacognosy and Phytochemistry. 8(3): 2697-2701.
  28. López, S.; Castaño, J. (2020). In vitro effect of four fungicides on Colletotrichum gloeosporioides causing anthracnosis on the Red Globe grape variety. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 44(172): 747-758. doi: https://doi.org/10.18257/raccefyn.1139
  29. MADR. (2021). Cadena Productiva del Ñame. Ministerio de Agricultura y Desarrollo Rural (MADR). Retrieved from: https://sioc.minagricultura.gov.co/Yuca/Documentos/2021-03-31%20Cifras%20Sectoriales%20ñame.pdf
  30. Martin, P., Krawczyk, T., Pierce, K., Thomas, C., Khodadadi, F., Aćimović, S., Peter, K. (2021). Fungicide sensitivity of Colletotrichum species causing bitter rot of apple in the Mid-Atlantic United States. Plant Disease. 106 (2): 549-563. doi: 10.1094/pdis-06-21-1142-re.
  31. Moreira, R., Hamada, N., Peres, N., De Mio, L. (2019). Sensitivity of the Colletotrichum acutatum species complex from apple trees in Brazil to Dithiocarbamates, Methyl Benzimidazole Carbamates, and Quinone outside inhibitor fungicides. Plant disease. 103(10): 2569-2576. doi: https://doi.org/10.1094/PDIS-07-18-1144-RE
  32. Ntui, VO., Uyoh, E., Ita, EE., Markson, A., Tripathi, J., Okon, N., Tripathi, L. (2021). Strategies to combat the problem of yam anthracnose disease: Status and prospects. Molecular Plant Pathology. 22(10): 1302-1314. doi: https://doi.org/10.1111/mpp.13107
  33. Nwadili, C., Augusto, J., Bhattacharjee, R., Atehnkeng, J., Lopez, A., Onyeka, T., Bandyopadhyay, R. 2017. Comparative reliability of screening parameters for anthracnose resistance in water yam (Dioscorea alata). Plant disease, 101(1), 209-216. doi: https://doi.org/10.1094/PDIS-06-16-0924-RE
  34. Omrane, S., Audéon, C., Ignace, A., Duplaix, C., Aouini, L., Kema, G., Fillinger, S. (2017). Plasticity of the MFS1 promoter leads to multidrug resistance in the wheat pathogen Zymoseptoria tritici. MSphere. 2(5): e00393-17. doi: https://doi.org/10.1128/mSphere.00393-17
  35. Osorio, C. (1989). Control químico de la antracnosis del ñame causada por Colletotrichum gloeosporioides, Penz (No. Doc. 25497) CO-BAC, Bogotá). 1-4 p.
  36. Patrice, N., Placide, D., Madjerembe, A., Rony, M., Gabriel, D., Ulrich, B., Zachee, A. (2021). In vitro, In vivo and In situ, Effect of Mancozeb 80 WP on Colletotrichum gloeosporioides (Penz.) Penz. and Sacc., Causative Agent of Anthracnose of Cashew (Anacardium occidentale L.) in Chad and Cameroon. International Journal of Pathogen Research. 6(3): 1-14. doi: 10.9734/ijpr/2021/v6i330161
  37. Perez, P., Alberto, R. (2020). Chemical Management of Anthracnose-Twister (Colletotrichum gloeosporioides and Fusarium fujikuroi) Disease of Onion (Allium cepa). Plant Pathology & Quarantine. 10(1): 198-216. doi: 10.5943/ppq/10/1/19
  38. Poti, T., Mahawan, K., Cheewangkoon, R., Arunothayanan, H., Akimitsu, K., Nalumpang, S. (2020). Detection and molecular characterization of carbendazim‐resistant Colletotrichum truncatum isolates causing anthracnose of soybean in Thailand. Journal of Phytopathology. 168(5): 267-278. doi: https://doi.org/10.1111/jph.12888
  39. R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
  40. Ramdial, H., Hosein, F., Rampersad, S. (2016). Detection and molecular characterization of benzimidazole resistance among Colletotrichum truncatum isolates infecting bell pepper in Trinidad. Plant disease. 100(6): 1146-1152. https://doi.org/10.1094/PDIS-09-15-0995-RE
  41. Reis, E., Guerra, W., Reis, A., Zanatta, M., Carmona, M., Sautura, F. (2021). Fungi Resistance to Multissite Fungicides. Journal of Agricultural Science. 13(11): 141-151 doi: https://doi.org/10.5539/jas.v13n11p141
  42. Ritz, C., Baty, F., Streibig, J. C., Gerhard, D. (2015). Dose-response analysis using R. PloS one. 10(12): e0146021. https://doi.org/10.1371/journal.pone.0146021
  43. Rosado, Y. (2016). Evaluación de fungicidas orgánicos y convencionales para el control de enfermedades follares en ñame (Dioscorea alata L.) (Doctoral dissertation).
  44. Royet-Barroso, J., Campo-Arana, R.O. (2021). Variabilidad morfológica y patogénica de Colletotrichum spp. en ñame en el departamento de Córdoba. Temas Agrarios. (26). doi: DOI: 10.21897/rta.v26i1
  45. Samaras, Α., Ntasiou, P., Myresiotis, C., Karaoglanidis, G. (2020). Multidrug resistance of Penicillium expansum to fungicides: whole transcriptome analysis of MDR strains reveals overexpression of efflux transporter genes. International Journal of Food Microbiology. 335: 108896. https://doi.org/10.1016/j.ijfoodmicro.2020.108896
  46. Sierotzki, H. (2015). Respiration inhibitors: complex III. In Ishi, H., William, D. (Eds). Fungicide resistance in plant pathogens. pp. 119-143. Springer, Tokyo. 490p. doi: https://doi.org/10.1007/978-4-431-55642-8
  47. Torres, C., Tapia, R., Higuera, I., Martin, R., Nexticapan, A., Perez, D. (2015). Sensitivity of Colletotrichum truncatum to four fungicides and characterization of thiabendazole-resistant isolates. Plant Disease. 99(11): 1590-1595. https://doi.org/10.1094/PDIS-11-14-1183-RE
  48. Usman, H., Tan, Q., Karim, M., Adnan, M., Yin, W., Zhu, F., Luo, C. (2021). Sensitivity of Colletotrichum fructicola and Colletotrichum siamense of Peach in China to Multiple Classes of Fungicides and Characterization of Pyraclostrobin-Resistant Isolates. Plant Disease. 105(11): 3459-3465. https://doi.org/10.1094/PDIS-04-21-0693-RE
  49. Villani, S., Biggs, A., Cooley, D., Raes, J., Cox, K. (2015). Prevalence of myclobutanil resistance and difenoconazole insensitivity in populations of Venturia inaequalis. Plant disease. 99(11): 1526-1536. doi: https://doi.org/10.1094/PDIS-01-15-0002-RE
  50. Xavier, K. V., Kc, A. N., Peres, N. A., Deng, Z., Castle, W., Lovett, W., Vallad, G. E. (2019). Characterization of Colletotrichum Species Causing Anthracnose of Pomegranate in the Southeastern United States. Plant Disease. 103(11): 2771-2780. https://doi.org/10.1094/PDIS-03-19-0598-RE
  51. Yokosawa, S., Eguchi, N., Kondo, K. I., Sato, T. (2017). Phylogenetic relationship and fungicide sensitivity of members of the Colletotrichum gloeosporioides species complex from apple. Journal of General Plant Pathology. 83(5): 291-298. doi: https://doi.org/10.1007/s10327-017-0732-9
  52. Zhang, C., Imran, M., Xiao, L., Hu, Z., Li, G., Zhang, F., Liu, X. (2021). Difenoconazole resistance shift in Botrytis cinerea from Tomato in China associated with inducible expression of CYP51. Plant Disease. 105(2): 400-407. doi: https://doi.org/10.1094/PDIS-03-20-0508-RE
  53. Zhang, L., Song, L., Xu, X., Zou, X., Duan, K., Gao, Q. (2020). Characterization and fungicide sensitivity of Colletotrichum species causing strawberry anthracnose in Eastern China. Plant disease. 104(7): 1960-1968. doi: https://doi.org/10.1094/PDIS-10-19-2241-RE
  54. Zhou, Y., Xu, J., Zhu, Y., Duan, Y., Zhou, M. (2016). Mechanism of action of the benzimidazole fungicide on Fusarium graminearum: interfering with polymerization of monomeric tubulin but not polymerized microtubule. Phytopathology. 106(8): 807-813. doi: https://doi.org/10.1094/PHYTO-08-15-0186-R
  55. Ziogas, B. N., Malandrakis, A. A. (2015). Sterol biosynthesis inhibitors: C14 demethylation (DMIs). In Ishi, H., William, D. (Eds). Fungicide resistance in plant pathogens. pp. 199-216. Springer, Tokyo. 490p. doi: https://doi.org/10.1007/978-4-431-55642-8