Vol. 23 Núm. 3 (2021):
Artículo original

Capacidad de infección de hongos asociados a la pudrición seca de los Tubérculos de Ñame : Fungal infection

Diana Beatriz Sánchez López
Agrosavia

Publicado 2021-08-28

Palabras clave

  • Almacenamiento; calidad; inoculación; postcosecha; patología; producción.

Cómo citar

Sánchez López, D. B., Luna-Castellanos, L. L. ., Espinosa-Carvajal, M. R. ., Pérez-Polo, D. J. ., & Cadena-Torres, J. . (2021). Capacidad de infección de hongos asociados a la pudrición seca de los Tubérculos de Ñame : Fungal infection. Revista De Investigaciones Altoandinas, 23(3), 149–158. https://doi.org/10.18271/ria.2021.305

Resumen

La pudrición seca de los tubérculos es una de las enfermedades más devastadoras en la producción de ñame espino (Dioscorea rotundata Poir.) en la región Caribe de Colombia.  Esta enfermedad ataca los tubérculos ocasionando pérdidas de producción durante el cultivo. En previos experimentos se lograron aislar e identificar 11 morfotipos de hongos asociados a esta enfermedad en cultivos de ñame en la región Caribe de Colombia. La presente investigación se llevó a cabo bajo condiciones de invernadero con el objeto de determinar la capacidad de infección de estos 11 posibles agentes causales, mediante inoculación en plantas de 150 días de edad, en dos materiales genéticos de ñame espino (0307-49SB y 0307-50CB). Los resultados mostraron que los morfotipos DH2 (Lasiodiplodia theobromae), DH11 (Curvularia aeria), DH20 (Aspergillus niger), and DH17 (Fusarium equiseti), mostraron la mayor capacidad de infección a los tubérculos de ñame, independientemente de los materiales genéticos, por lo que se consideraron como los principales agentes causales de la enfermedad en la región Caribe de Colombia. Los restantes siete (7) morfotipos, a pesar de haber sido inoculados en las raíces de las plantas, mostraron efectos menores sobre los tubérculos y otros afectaron órganos distintos de la planta, especialmente los tallos y la parte aérea de la planta de ñame. Este estudio permite concentrar la investigación en estos cuatro morfotipos a fin de desarrollar planes de manejo que permitan disminuir la incidencia de esta enfermedad en la región Caribe de Colombia.

Citas

  1. Abbasian, E.G., Bayat, M., Chaichi Nosrati, A., Hashemi, S. J., & Ghoranneviss, M. (2020). The effect of atmospheric plasma jet on Fusarium species producing mycotoxins T2 and DON: An approach for physical and chemical investigation. Eurasian Chemical Communications, 2(3), 340-348. https://bit.ly/33AYwDC
  2. Adeniji, A., Taiga, A., & Ayodele, M. S. (2020). Comparative Studies on the Susceptibility of Three Tubers of Dioscorea Species to Dry Rot in Anyigba, Kogi State. International Annals of Science, 8(1), 70-74. https://doi.org/10.21467/ias.8.1.70-74
  3. Agronet (2018). Estadísticas Agrícola Área, producción, rendimiento y participación. Base de datos Agronet. Colombia. Consultado 03 marzo de 2021. https://bit.ly/2Qb1RWQ
  4. Aidoo, A. K., Arthur, S., Bolfrey-Arku, G., Osei, K., Lamptey, J. N. L., Mochiah, M. B., ... & Danquah, E. O. (2020). Storage rot of seed yam resulting from speargrass injuries. African Crop Science Journal, 28(2), 203-211. DOI: https://dx.doi.org/10.4314/acsj.v28i2.6
  5. Anwadike, B. (2021). fungal rot of white yam (Dioscorea rotundata) sold in warri markets, Nigeria. International Journal of Agricultural Research (IJAR), 2(3), 1-11. https://bit.ly/3ig2NEy
  6. Anwadike, B. C. (2018). Fungal Rot of Yam (Dioscorea alata Lin.) Sold At Nsukka Markets in Nigeria. Annual Research & Review in Biology, 1-9. https://doi.org/10.9734/ARRB/2018/37583
  7. Azil, N., Stefańczyk, E., Sobkowiak, S., Chihat, S., Boureghda, H., & Śliwka, J. Identification and pathogenicity of Fusarium spp. associated with tuber dry rot and wilt of potato in Algeria. European Journal of Plant Pathology, 1-15. https://doi.org/10.1007/s10658-020-02177-5
  8. Borges-García, M., Sánchez Rodríguez, Y., & Reyes Avalos, D. (2020). Manejo de tubérculos comerciales de ñame (Dioscorea spp.) durante la cosecha y almacenamiento post cosecha. Agrisost, 26(2), 1-11. https://bit.ly/2SH6Tv7
  9. Cruz-Borruel, M., Hernández-Fundora, Y., & Rivas-Figueredo, E. (2006). Mecanismos de resistencia de las plantas al ataque de patógenos y plagas. Temas de ciencia y tecnología, 10(29), 45-54. https://bit.ly/3eIStU1
  10. Darkwa, K., Olasanmi, B., Asiedu, R., & Asfaw, A. (2020). Review of empirical and emerging breeding methods and tools for yam (Dioscorea spp.) improvement: Status and prospects. Plant Breeding, 139(3), 474-497. http://dx.doi.org/ 10.1111/pbr.12783
  11. Delaux, P. M., & Schornack, S. (2021). Plant evolution driven by interactions with symbiotic and pathogenic microbes. Science, 371(6531). https://doi.org/ 10.1126/science.aba6605
  12. Dongzhen, F., Xilin, L., Xiaorong, C., Wenwu, Y., Yunlu, H., Yi, C., & Chunsheng, G. (2020). Fusarium Species and Fusarium oxysporum Species Complex Genotypes Associated with Yam wilt in South-Central China. Frontiers in Microbiology, 11(1964), 1-17. https://doi.org/10.3389/fmicb.2020.01964.
  13. El-Baky, N. A., Abdel Rahman, R. A., Sharaf, M. M., & Amara, A. A. A. F. (2021). The Development of a Phytopathogenic Fungi Control Trial: Aspergillus flavus and Aspergillus niger Infection in Jojoba Tissue Culture as a Model. The Scientific World Journal. https://doi.org/10.1155/2021/6639850.
  14. Escobar-Mamani, F., Branca, D., & Haller, A. (2020). Investigación de montaña sobre y para la región andina. Revista de Investigaciones Altoandinas, 22(4), 311-312. https://doi.org/10.18271/ria.2020.191.
  15. Espargham, N., Mohammadi, H. & Gramaje, D. (2020). A Survey of Trunk Disease Pathogens within Citrus Trees in Iran. Plantas, 9(6), 754. https://doi.org/10.3390/plants9060754
  16. FAOSTAT-Organización para las naciones unidad para alimentación y agricultura FAO. (2019). Consultado: mayo 19 de 2021. https://bit.ly/3eZPS8g.
  17. Félix, C., Duarte, A. S., Vitorino, R., Guerreiro, A. C., Domingues, P., Correia, A., ... & Esteves, A. C. (2016). Temperature modulates the secretome of the phytopathogenic fungus Lasiodiplodia theobromae. Frontiers in Plant Science, 7, 1096. https://doi.org/10.3389/fpls.2016.01096
  18. Gil-Serna, J., Vázquez, C., & Patiño, B. (2020). Genetic regulation of aflatoxin, ochratoxin A, trichothecene, and fumonisin biosynthesis: A review. International Microbiology, 23(1), 89-96. https://doi.org/10.1007/s10123-019-00084-2
  19. Gonçalves, M.F., Nunes, R.B., Tilleman, L., Van de Peer, Y., Deforce, D., Van Nieuwerburgh, F., ... & Alves, A. (2019). Dual RNA Sequencing of Vitis vinifera during Lasiodiplodia theobromae Infection Unveils Host–Pathogen Interactions. International journal of molecular sciences, 20(23), 6083. https://doi.org/10.3390/ijms20236083
  20. Gwa, V.I., & Richard, I.B. (2018). Susceptibility of White Yam (Dioscorea rotundata Poir) Tuber to Rot Fungi and Control with Extracts of Zingiber officinale Rosc. Azadirachta indica, 9(9), 1-7. https://doi.org/10.4172/2157-7471.1000452.
  21. Haller, A., & Branca, D. (2020). Montología: una perspectiva de montaña hacia la investigación transdisciplinaria y el desarrollo sustentable. Revista de Investigaciones Altoandinas, 22(4), 313-322. https://doi.org/10.18271/ria.2020.193.
  22. Ijato, J.Y. (2019). Fungal pathogens of yam (Dioscorea rotundata Poir) and their biocontrol. Life Science Journal, 16(9), 92-93. http://dx.doi.org/10.7537/marslsj160919.11
  23. Jahén-Rivera, S.N., Gómez-Rodríguez, O., & Espinosa-Victoria, D. (2020). Aislamiento e identificación de patógenos causantes de la pudrición del tallo de la higuera (Ficus carica). Revista mexicana de fitopatología, 38(2), 269-279. https://doi.org/10.18781/r.mex.fit.2001-6
  24. Khan, I.H., & Javaid, A. (2020). First Report of Curvularia lunata Causing Postharvest Fruit Rot of Banana in Pakistan. International Journal of Agriculture Biology 24,1621-1624 https://doi.org/ 10.17957/IJAB/15.1603
  25. Kosiak, E.B., Holst-Jensen, A., Rundberget, T., Jaen, M. T. G., & Torp, M. (2005). Morphological, chemical and molecular differentiation of Fusarium equiseti isolated from Norwegian cereals. International Journal of Food Microbiology, 99(2), 195-206. https://doi.org/10.1016/j.ijfoodmicro.2004.08.015
  26. Kostić, A. Ž., Milinčić, D. D., Petrović, T. S., Krnjaja, V. S., Stanojević, S. P., Barać, M. B., ... & Pešić, M. B. (2019). Mycotoxins and mycotoxin producing fungi in pollen. Toxins, 11(2), https://doi.org/64.10.3390/toxins11020064
  27. Lacaze, A., & Joly, D.L. (2020). Structural specificity in plant–filamentous pathogen interactions. Molecular Plant Pathology, 21(11), 1513-1525. https://doi.org/10.1111/mpp.12983
  28. Li, M., Yu, R., Bai, X., Wang, H., & Zhang, H. (2020). Fusarium: a treasure trove of bioactive secondary metabolites. Natural Product Reports, 37(12), 1568-1588. https://doi.org/10.1039 / D0NP00038H
  29. Mabou, L. C. N., Sameza, M. L., Tchameni, S. N., Eke, P., Toghueo, R. M. K., Albertini, A., ... & Boyom, F. F. (2020). Molecular Identification of Fungal Pathogens Associated with Post-harvest Yam Tubers Rot in Mbam et Kim Division (Cameroon) with Emphasis on Penicillium monomenatosum (Frisvad, Filt. & Wicklow) as a First Report. American Journal of Microbiological Research, 8(2), 73-78. https://doi.org/10.12691/ajmr-8-2-5
  30. Mayorquin, J. S., Wang, D. H., Twizeyimana, M., & Eskalen, A. (2016). Identification, distribution, and pathogenicity of Diatrypaceae and Botryosphaeriaceae associated with citrus branch canker in the southern California desert. Plant Disease, 100(12), 2402-2413. https://doi.org/10.1094/PDIS-03-16-0362-RE
  31. Nwankiti, A.O., & Gwa, V.I. (2018). Evaluation of antagonistic effect of Trichoderma harzianum against Fusarium oxysporum causal agent of white yam (Dioscorea rotundata Poir) tuber rot. Trends in Technical & Scientific Research, 1(1), 0012-0018. https://bit.ly/3biBTrO
  32. O’sullivan, J.N. (2010). Yam nutrition: nutrient disorders and soil fertility management. Australia. Australian Centre for International Agricultural Research (ACIAR). https://bit.ly/3o9fJxx
  33. Patel, P. (2020). Influence of Carbon-Nitrogen Supplements and Ph On Growth of Sugarcane Stem Rot Pathogen Fusarium Solani Nvs671. Journal of Fungal Diversity, 1(1), 27. https://bit.ly/2QbMX2C
  34. Patrice, A. K., Séka, K., Francis, Y. K., Théophile, A. S., Fatoumata, F., & Diallo, H. A. (2017). Effects of Three Aqueous Plant Extracts in the Control of Fungi Associated with Post-harvest of Yam (Dioscorea alata). International Journal of Agronomy and Agricultural Research, 3, 77-87. https://bit.ly/2Qe2LC7
  35. Perincherry, L., Ajmi, C., Oueslati, S., Waśkiewicz, A., & Stępień, Ł. (2020). Induction of Fusarium lytic Enzymes by Extracts from Resistant and Susceptible Cultivars of Pea (Pisum sativum L.). Pathogens, 9(11), 976. https:// doi.org/10.3390/pathogens9110976
  36. Pornsuriya, C., Ito, Si. & Sunpapao, A. (2018). First report of leaf spot on lettuce caused by Curvularia aeria. J Gen Plant Pathol 84, 296-299. https://doi.org/10.1007/s10327-018-0782-7
  37. Rangel-Montoya, E. A., Paolinelli, M., Rolshausen, P., & Hernandez-Martinez, R. (2020). The role of melanin in the grapevine trunk disease pathogen Lasiodiplodia gilanensis. Phytopathologia Mediterranea, 59(3), 549-563. https://doi.org 10.14601/Phyto-11685
  38. Riaz, M., Akhtar, N., Khan, S. N., Shakeel, M., & Tahir, A. (2020). Neocosmospora rubicola: An unrecorded pathogen from Pakistan causing potato stem rot. Sarhad Journal of Agriculture, 36(3), 906-912. https://bit.ly/3eIA9Ko
  39. Salvatore, M.M., Alves, A., & Andolfi, A. (2020). Secondary metabolites of Lasiodiplodia theobromae: Distribution, chemical diversity, bioactivity, and implications of their occurrence. Toxins, 12(7), 457. https://doi.org/10.3390/toxins12070457
  40. Sánchez-López, D. B., Luna-Castellanos, L. L., Díaz-Cabadiaz, A. T., Pérez-Pazos, J. V., & Cadena-Torres, J. (2020). Identificación de hongos asociados a la pudrición seca del ñame bajo condiciones de almacenamiento. Revista de Investigaciones Altoandinas, 22(3), 199-214. http://dx.doi.org/10.18271/ria.2020.655
  41. Sandoval-Denis, M., Lombard, L., Crous, P.W. (2019). Back to the roots: a reappraisal of Neocosmospora. Persoonia, 43, 90-185. https://doi.org/10.3767/persoonia.2019.43.04
  42. Shahzadi, L., Bashir, A., Khan, S. N., Riaz, M., Shah, M. H., Nawaz, Z., & Tahir, A. (2020). Influence of abiotic factors on growth and sporulation of Neocosmospora rubicola associated with stem rot of potato in Punjab, Pakistan. Mycopath, 16(2),87-90. https://bit.ly/3hmk3rN
  43. Stępień, Ł., Lalak-Kańczugowska, J., Witaszak, N., & Urbaniak, M. (2020). Fusarium secondary metabolism biosynthetic pathways: so close but so far away. Co-Evolution of Secondary Metabolites, 211-247. https://doi.org/10.1007/978-3-319-96397-6_28
  44. Vedovatto, M., Bento, J. C., Kiefer, C., Souza, K. M. R., & Franco, G. L. (2020). Mycotoxins in the beef cattle diet. Archivos de zootecnia, 69(265), 234-244. https://bit.ly/33ArpzX
  45. Zheng, F., Xu, G., Zheng, F. Q., Ding, X.F., & Xie, C.P. (2018). Neocosmospora rubicola causing stem rot of pitaya (Hylocereus costaricensis) in China. Plant Disease, 102(12), 2653-2653. https://doi.org/10.1094/PDIS-09-17-1469-PDN
  46. Zhu, Y. B., Wu, X. G., Xin, H. W., Wang, C. Y., Xiong, L., & Zhang, D.H. (2016). Occurrence characteristics of main diseases and insect pests of organic yam in Wanzai county and key technology of comprehensive control. Northern Horticulture 206-208. https://doi.org/10.11937/bfyy.201621052