Vol. 27 (2025): Publicación continua
Original articles

Ale-type craft beer with grape skin (Vitis vinifera): Improves phenolic and antioxidant capacity

Lenin Quille-Quille
Facultad de Ingeniería de Procesos Industriales, Universidad Nacional de Juliaca, Av. Nueva Zelandia 631, Juliaca 21101, Perú
Mario Cotacallapa-Sucapuca
Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Prolongación Calle Ancash s/n, Moquegua 18001, Perú

Published 2025-12-31

Keywords

  • craft beer,
  • maceration,
  • grape skin

How to Cite

Quille-Quille, L., & Cotacallapa-Sucapuca, M. (2025). Ale-type craft beer with grape skin (Vitis vinifera): Improves phenolic and antioxidant capacity. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 27, e27726. https://doi.org/10.18271/ria.2025.726

Abstract

Craft beer has been generating great interest among contemporary consumers due to its health benefits, unique flavors, and innovative brewing techniques. Ale-type craft beer was produced with the addition of 5% of black criolla grape skin in the maceration stage, comprised of 4 treatments (T), being T1 at 50°C for 10 min, T2 at 50°C for 30 min, T3 at 70°C for 10 min and T4 at 70°C for 30 min. Total phenolics and antioxidant capacity of all treatments were significantly higher than the control. Treatments with shorter maceration times maintained a trend of increased total phenolics and antioxidant capacity compared to longer maceration times. According to the physicochemical measurements of pH, °Brix and density, the final alcohol content was determined at 91% in T1, 100% in T2, 93% in T3 and 70% in T4, with T4 being the one that presented the best general acceptability by the untrained panelists on a 9-point hedonic scale. Diversifying craft beer could increase consumer acceptance and interest in its sensory, functional, and environmental aspects.

References

  1. Abderrahim, F., Arribas, S. M., Gonzalez, M. C., & Condezo-Hoyos, L. (2013). Rapid high-throughput assay to assess scavenging capacity index using DPPH. Food Chemistry, 141(2), 788-794. doi: https://doi.org/10.1016/j.foodchem.2013.04.055
  2. Alide, T., Wangila, P., & Kiprop, A. (2020). Effect of cooking temperature and time on total phenolic content, total flavonoid content and total in vitro antioxidant activity of garlic. BMC Research Notes, 13(1), 564. doi:10.1186/s13104-020-05404-8
  3. AOAC-932.12. (1980). Official Methods of Analysis 932.12 Solid (Soluble) in Fruit Products. Refractometer Method. 16 th Edition. Washington D.C., USA. In.
  4. AOAC-981.12. (1990). Official methods of analysis. 981.12 pH of Acidied Foods. ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS. 15th edition. Washington, DC.
  5. Arranz, S., & Saura Calixto, F. (2010). Analysis of polyphenols in cereals may be improved performing acidic hydrolysis: A study in wheat flour and wheat bran and cereals of the diet. Journal of Cereal Science, 51(3), 313-318. doi: https://doi.org/10.1016/j.jcs.2010.01.006
  6. Barbagallo, R. N., Rutigliano, C. A. C., Rizzo, V., & Muratore, G. (2025). Exploring beer culture dissemination and quality perception through different media: the craft beer experience. Food and Humanity, 4, 100522. doi: https://doi.org/10.1016/j.foohum.2025.100522
  7. Becchi, P. P., Vezzulli, F., Lambri, M., Lucini, L., Chinnici, F., Romanini, E., & Gabrielli, M. (2025). Characterization of Italian Grape Ale beers obtained with different additions of Malvasia di Candia Aromatica must and marcs. Journal of Food Composition and Analysis, 137, 106970. doi: https://doi.org/10.1016/j.jfca.2024.106970
  8. Bender, A. B. B., Speroni, C. S., Moro, K. I. B., Morisso, F. D. P., dos Santos, D. R., da Silva, L. P., & Penna, N. G. (2020). Effects of micronization on dietary fiber composition, physicochemical properties, phenolic compounds, and antioxidant capacity of grape pomace and its dietary fiber concentrate. LWT, 117, 108652. doi: https://doi.org/10.1016/j.lwt.2019.108652
  9. Bertuzzi, T., Mulazzi, A., Rastelli, S., Donadini, G., Rossi, F., & Spigno, G. (2020). Targeted healthy compounds in small and large-scale brewed beers. Food Chemistry, 310, 125935. doi: https://doi.org/10.1016/j.foodchem.2019.125935
  10. Bobadilla Aransay, S. (2022). Estudio del potencial de subproductos de vinificación como fuente de compuestos fenólicos. (Maestria Fin de Grado). Universidad Pública de Navarra/Universidad del País Vasco, Universidad Pública de Navarra/Universidad del País Vasco/CSIC-CAR-UR - Instituto del Ciencias de la Vid y el Vino (ICVV). Retrieved from http://hdl.handle.net/10261/296468
  11. Bredun, M. A., Prestes, A. A., Panceri, C. P., Prudêncio, E. S., & Burin, V. M. (2023). Bioactive compounds recovery by freeze concentration process from winemaking by-product. Food Research International, 173, 113220. doi: https://doi.org/10.1016/j.foodres.2023.113220
  12. Cantillano, R. F. F., Ávila, J. M. M., Peralba, M. d. C. R., Pizzolato, T. M., & Toralles, R. P. J. H. B. (2012). Actividad antioxidante, compuestos fenólicos y ácido ascórbico de frutillas en dos sistemas de producción. 30, 620-626.
  13. Cappelin, E., Meneguzzi, D., Hendges, D. H., Oldoni, T. L. C., Daltoé, M. L. M., Marchioro, M. L. K., & da Cunha, M. A. A. (2024). Low-alcohol light beer enriched with olive leaves extract: Cold mashing technique associated with interrupted fermentation in the brewing process. Electronic Journal of Biotechnology, 68, 81-89. doi: https://doi.org/10.1016/j.ejbt.2024.01.002
  14. Carisma, N. A. S., & Calingacion, M. N. (2025). Metabolomics and (craft) beers – recent advances. Food Research International, 205, 116010. doi: https://doi.org/10.1016/j.foodres.2025.116010
  15. Cheiran, K. P., Raimundo, V. P., Manfroi, V., Anzanello, M. J., Kahmann, A., Rodrigues, E., & Frazzon, J. (2019). Simultaneous identification of low-molecular weight phenolic and nitrogen compounds in craft beers by HPLC-ESI-MS/MS. Food Chemistry, 286, 113-122. doi: https://doi.org/10.1016/j.foodchem.2019.01.198
  16. Díaz, L. E., Gómez-Martínez, S., Nova, E., & Marcos, A. (2022). ¿Sabemos lo que es un consumo moderado de alcohol? El caso particular de la cerveza. Nutrición Hospitalaria, 39, 12-16. Retrieved from http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0212-16112022000700004&nrm=iso
  17. Dlamini, B. C., Taylor, J. R. N., & Buys, E. M. (2019). Influence of ammonia and lysine supplementation on yeast growth and fermentation with respect to gluten-free type brewing using unmalted sorghum grain. International Journal of Food Science and Technology, 55(2), 841-850. doi:10.1111/ijfs.14373
  18. Drevelegka, I., & Goula, A. M. (2020). Recovery of grape pomace phenolic compounds through optimized extraction and adsorption processes. Chemical Engineering and Processing - Process Intensification, 149, 107845. doi: https://doi.org/10.1016/j.cep.2020.107845
  19. Gasiński, A., Kawa-Rygielska, J., Mikulski, D., Kłosowski, G., & Głowacki, A. (2022). Application of white grape pomace in the brewing technology and its impact on the concentration of esters and alcohols, physicochemical parameteres and antioxidative properties of the beer. Food Chemistry, 367, 130646. doi: https://doi.org/10.1016/j.foodchem.2021.130646
  20. Gerhäuser, C. (2009). 68 - Phenolic Beer Compounds to Prevent Cancer. In V. R. Preedy (Ed.), Beer in Health and Disease Prevention (pp. 669-684). San Diego: Academic Press.
  21. González-Salitre, L., Guillermo González-Olivares, L., & Antobelli Basilio-Cortes, U. (2023). Humulus lupulus L. a potential precursor to human health: High hops craft beer. Food Chemistry, 405, 134959. doi: https://doi.org/10.1016/j.foodchem.2022.134959
  22. Grassi, S., Amigo, J. M., Lyndgaard, C. B., Foschino, R., & Casiraghi, E. (2014). Beer fermentation: Monitoring of process parameters by FT-NIR and multivariate data analysis. Food Chemistry, 155, 279-286. doi: https://doi.org/10.1016/j.foodchem.2014.01.060
  23. Kawa-Rygielska, J., Adamenko, K., Kucharska, A. Z., Prorok, P., & Piórecki, N. (2019). Physicochemical and antioxidative properties of Cornelian cherry beer. Food Chemistry, 281, 147-153. doi: https://doi.org/10.1016/j.foodchem.2018.12.093
  24. Kunze, W. (2006). Tecnología para Cerveceros y Malteros (Berlin Ed. Primera edición en español ed.). VLB Berlin, Seestraße 13, 13353 Berlín, Alemania.
  25. Ledley, A. J., Elias, R. J., & Cockburn, D. W. (2024). The role of starch digestion in the brewing of gluten-free beers. Food Bioscience, 61, 104949. doi: https://doi.org/10.1016/j.fbio.2024.104949
  26. Liu, C., Li, Q., Niu, C., Tian, Y., Zhao, Y., & Yin, X. (2018). The use of atmospheric and room temperature plasma mutagenesis to create a brewing yeast with reduced acetaldehyde production. 124(3), 236-243. doi: https://doi.org/10.1002/jib.498
  27. Macavilca, E. A., & Condezo-Hoyos, L. (2020). Assessment of total antioxidant capacity of altiplano colored quinoa (Chenopodium quinoa willd) by visible and near-infrared diffuse reflectance spectroscopy and chemometrics. LWT, 134, 110182. doi: https://doi.org/10.1016/j.lwt.2020.110182
  28. Mu, Y., Zeng, C., Ni, Y., Zhang, S., Yang, J., & Feng, Y. (2025). Comparative analysis of physicochemical properties, antioxidant activities, and metabolomic profiles in daylily-supplemented craft beer fermented with different Saccharomyces strains. Food Chemistry: X, 26, 102326. doi: https://doi.org/10.1016/j.fochx.2025.102326
  29. Nardini, M., & Garaguso, I. (2020). Characterization of bioactive compounds and antioxidant activity of fruit beers. Food Chemistry, 305, 125437. doi: https://doi.org/10.1016/j.foodchem.2019.125437
  30. Nunes Filho, R. C., Galvan, D., Effting, L., Terhaag, M. M., Yamashita, F., Benassi, M. d. T., & Spinosa, W. A. (2021). Effects of adding spices with antioxidants compounds in red ale style craft beer: A simplex-centroid mixture design approach. Food Chemistry, 365, 130478. doi: https://doi.org/10.1016/j.foodchem.2021.130478
  31. Paiano, V., Bianchi, G., Davoli, E., Negri, E., Fanelli, R., & Fattore, E. (2014). Risk assessment for the Italian population of acetaldehyde in alcoholic and non-alcoholic beverages. Food Chemistry, 154, 26-31. doi: https://doi.org/10.1016/j.foodchem.2013.12.098
  32. Paucar-Menacho, L. M., Salvador-Reyes, R., Castillo-Martinez, W. E., Lavado-Cruz, A., Verona-Ruiz, A., Campos-Rodriguez, J., . . . Quezada-Berrú, S. (2025). Optimization of a craft ale-type beer enriched with cañihua malt (Chenopodium pallidicaule) and banana passionfruit juice (Passiflora tripartita var. mollisima). Heliyon, 11(4), e42610. doi: https://doi.org/10.1016/j.heliyon.2025.e42610
  33. Pilligua, R. L., Zambrano, R. L. B., Gonzáles, A. E. M., Delgado, E. G. L., & Merlo, R. J. R. E. (2021). Influencia del mucilago de cacao (Theobroma cacao) en las características fisicoquímicas y sensoriales de la cerveza artesanal. Revista Espamciencia, 12(1), 25-32.
  34. QuercusLab. (2015). Método del picnómetro para determinar densidades. Blog sobre la ciencia y sobre la vida en el laboratorio. Retrieved from bit.ly/4dMiw9s
  35. Radu, E. D., Mureșan, V., Emilia Coldea, T., & Mudura, E. (2024). Unconventional raw materials used in beer and beer-like beverages production: Impact on metabolomics and sensory profile. Food Research International, 183, 114203. doi: https://doi.org/10.1016/j.foodres.2024.114203
  36. Rodríguez Cruz, W. E. (2015). Efecto de la sustitución de cebada (Hordeum vulgare) por quinua (Chenopodium quinoa) y del pH inicial de maceración en las características fisicoquímicas y aceptabilidad general de una cerveza tipo Ale. (Tesis para optar Título de Ingeniero en Industrias Alimentarias). Universidad privada Antenor Orrego, Retrieved from https://bit.ly/45FqHCA
  37. Schmidt-Hebbel, H. (1966). Química y tecnología de los alimentos: Editorial Salesiana.
  38. Sharma, K., Ko, E. Y., Assefa, A. D., Ha, S., Nile, S. H., Lee, E. T., & Park, S. W. (2015). Temperature-dependent studies on the total phenolics, flavonoids, antioxidant activities, and sugar content in six onion varieties. Journal of Food and Drug Analysis, 23(2), 243-252. doi: https://doi.org/10.1016/j.jfda.2014.10.005
  39. Tufariello, M., Grieco, F., Fiore, A., Gerardi, C., Capozzi, V., & Baiano, A. (2024). Effects of brewing procedures and oenological yeasts on chemical composition, antioxidant activity, and sensory properties of emmer-based craft beers. LWT, 199, 116044. doi: https://doi.org/10.1016/j.lwt.2024.116044
  40. Wanderley, R. d. O. S., Figueirêdo, R. M. F. d., Queiroz, A. J. d. M., Santos, F. S. d., Silva, A. P. d. F., Paiva, Y. F., . . . Lima, A. G. B. d. (2023). Effect of drying temperature on antioxidant activity, phenolic compound profile and hygroscopic behavior of pomegranate peel and seed flours. LWT, 189, 115514. doi: https://doi.org/10.1016/j.lwt.2023.115514
  41. Zhao, H. (2015). Chapter 64 - Effects of Processing Stages on the Profile of Phenolic Compounds in Beer. In V. Preedy (Ed.), Processing and Impact on Active Components in Food (pp. 533-539). San Diego: Academic Press.
  42. Zhao, H., Chen, W., Lu, J., & Zhao, M. (2010). Phenolic profiles and antioxidant activities of commercial beers. Food Chemistry, 119(3), 1150-1158. doi: https://doi.org/10.1016/j.foodchem.2009.08.028