Vol. 23 Núm. 4 (2021)
Artículo de revisión

Mecanismos de inducción de rizobios para reducir el estrés por sequía en las leguminosas

Nery Santillana
Departamento Académico de Agronomía y Zootecnia, Universidad Nacional de San Cristóbal de Huamanga

Publicado 2021-10-31

Palabras clave

  • Estrés,
  • sequía,
  • Huella plantar,
  • inactivación bacteriana,
  • nitrógeno retenido

Cómo citar

Santillana, N. (2021). Mecanismos de inducción de rizobios para reducir el estrés por sequía en las leguminosas. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 23(4). https://doi.org/10.18271/ria.2021.263

Resumen

La sequía es una de las principales limitaciones de la productividad agrícola y de la seguridad alimentaria en las montañas andinas. El uso de rizobios fijadores de nitrógeno atmosférico en simbiosis con leguminosas, y tolerantes a una amplia gama de condiciones adversas, como la sequía, es un gran potencial en la agricultura sustentable. El objetivo de esta revisión bibliográfica fue recopilar información sobre los mecanismos de inducción de los rizobios para disminuir el estrés por sequía en las leguminosas. La búsqueda de la información se realizó de agosto a diciembre de 2020 utilizando términos clave. Se hace conocer el efecto de la sequía en el proceso de la nodulación y fijación del nitrógeno atmosférico, asimismo, se describe la capacidad de los rizobios para sintetizar exopolisacáridos, enzimas, fitohormonas, sideróforos, osmolitos y solubilizar fosfatos, como mecanismos de inducción para mitigar el estrés por sequía en las leguminosas. La presente revisión servirá para plantear investigaciones futuras utilizando rizobios como estrategia para mitigar el efecto de la sequía en el cultivo de leguminosas principalmente en ecosistemas de   montañas andinas.

Referencias

  1. Adessi, A., Cruz de Carvalho, R., De Philippis, R., Branquinho, C. y Marques da Silva, J. (2018). Microbial extracellular polymeric substances improve water retention in dryland biological soil crusts. Soil Biology and Biochemistry, 116, 67–69. https://doi.org/10.1016/j.soilbio.2017.10.002
  2. Atieno, M. y Lesueur, D. (2019). Opportunities for improved legume inoculants: enhanced stress tolerance of rhizobia and benefits to agroecosystems. In Symbiosis 77(3), 191–205. https://doi.org/10.1007/s13199-018-0585-9
  3. Ayangbenro, A. S. y Babalola, O. O. (2021). Reclamation of arid and semi-arid soils: The role of plant growth-promoting archaea and bacteria. Current Plant Biology, 25, 100173. https://doi.org/10.1016/j.cpb.2020.100173
  4. Belimov, A. A., Zinovkina, N. Y., Safronova, V. I., Litvinsky, V. A., Nosikov, V. V., Zavalin, A. A. y Tikhonovich, I. A. (2019). Rhizobial ACC deaminase contributes to efficient symbiosis with pea (Pisum sativum L.) under single and combined cadmium and water deficit stress. Environmental and Experimental Botany, 167, 103859. https://doi.org/10.1016/j.envexpbot.2019.103859
  5. Bérard, A., Sassi, M. Ben, Kaisermann, A. y Renault, P. (2015). Soil microbial community responses to heat wave components: Drought and high temperature. Climate Research, 66(3), 243–264. https://doi.org/10.3354/cr01343
  6. Bouchiba, Z., Boukhatem, Z. F., Ighilhariz, Z., Derkaoui, N., Kerdouh, B., Abdelmoumen, H., Abbas, Y., Missbah El Idrissi, M. y Bekki, A. (2017). Diversity of nodular bacteria of Scorpiurus muricatus in western Algeria and their impact on plant growth. Canadian Journal of Microbiology, 63(5), 450–463. https://doi.org/10.1139/cjm-2016-0493
  7. Choudhury, F. K., Rivero, R. M., Blumwald, E. y Mittler, R. (2017). Reactive oxygen species, abiotic stress and stress combination. Plant Journal, 90(5), 856–867. https://doi.org/10.1111/tpj.13299
  8. Das, K., Prasanna, R. y Saxena, A. K. (2017). Rhizobia: a potential biocontrol agent for soilborne fungal pathogens. Folia Microbiologica, 62(5), 425–435. https://doi.org/10.1007/s12223-017-0513-z
  9. Defez, R., Andreozzi, A., Dickinson, M., Charlton, A., Tadini, L., Pesaresi, P. y Bianco, C. (2017). Improved drought stress response in alfalfa plants nodulated by an IAA over-producing Rhizobium Strain. Frontiers in Microbiology, 8, 1–13. https://doi.org/10.3389/fmicb.2017.02466
  10. Deng, J., Orner, E. P., Chau, J. F., Anderson, E. M., Kadilak, A. L., Rubinstein, R. L., Bouchillon, G. M., Goodwin, R. A., Gage, D. J. y Shor, L. M. (2015). Synergistic effects of soil microstructure and bacterial EPS on drying rate in emulated soil micromodels. Soil Biology and Biochemistry, 83, 116–124. https://doi.org/10.1016/j.soilbio.2014.12.006
  11. Dhull, S., Gera, R., Sheoran, H. S. y Kakar, R. (2018). Phosphate Solubilization Activity of Rhizobial Strains Isolated From Root Nodule of Cluster Bean Plant Native to Indian Soils. International Journal of Current Microbiology and Applied Sciences, 7(4), 255–266. https://doi.org/10.20546/ijcmas.2018.704.029
  12. Drenkhan, F. (2016). En la sombra del Cambio Global: hacia una gestión integrada y adaptativa de recursos hídricos en los Andes del Perú. Espacio y Desarrollo, 51(28), 25–51. https://doi.org/10.18800/espacioydesarrollo.201601.002
  13. Egamberdieva, D., Reckling, M. y Wirth, S. (2017). Biochar-based Bradyrhizobium inoculum improves growth of lupin (Lupinus angustifolius L.) under drought stress. European Journal of Soil Biology, 78, 38–42. https://doi.org/10.1016/j.ejsobi.2016.11.007
  14. Enebe, M. C. y Babalola, O. O. (2018). The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. Applied Microbiology and Biotechnology, 102(18), 7821–7835. https://doi.org/10.1007/s00253-018-9214-z
  15. Escobar-Mamani, F., Branca, D. y Haller, A. (2020). Investigación de montaña sobre y para la región andina. Revista de Investigaciones Altoandinas - Journal of High Andean Research, 22(4), 311–312. https://doi.org/10.18271/ria.2020.191
  16. Etesami, H. (2020). Plant–microbe interactions in plants and stress tolerance. En, D. K. Tripathi, V. P. Singh, D. Chauhan, S. Sharma, S. Prasad, N. Dubey y N. Ramawat (Eds.), Plant Life Under Changing Environment. Responses and management (pp. 355-396). Elsevier. https://doi.org/10.1016/b978-0-12-818204-8.00018-7
  17. Etesami, H. y Maheshwari, D. K. (2018). Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicology and Environmental Safety, 156, 225–246. https://doi.org/10.1016/j.ecoenv.2018.03.013
  18. Farooq, M., Gogoi, N., Barthakur, S., Baroowa, B., Bharadwaj, N., Alghamdi, S. S. y Siddique, K. H. M. (2017). Drought Stress in Grain Legumes during Reproduction and Grain Filling. Journal of Agronomy and Crop Science, 203(2), 81–102. https://doi.org/10.1111/jac.12169
  19. Farooq, Muhammad, Hussain, M., Usman, M., Farooq, S., Alghamdi, S. S. y Siddique, K. H. M. (2018). Impact of Abiotic Stresses on Grain Composition and Quality in Food Legumes. Journal of Agricultural and Food Chemistry, 66(34), 8887–8897. https://doi.org/10.1021/acs.jafc.8b02924
  20. Flores-Félix, J. D., Carro, L., Cerda-Castillo, E., Squartini, A., Rivas, R. y Velázquez, E. (2020). Analysis of the interaction between Pisum sativum and Rhizobium laguerreae strains nodulating this legume in Northwest Spain. Plants, 9(12), 1–16. https://doi.org/10.3390/plants9121755
  21. Furlan, A. L., Bianucci, E., Castro, S., & Dietz, K. J. (2017). Metabolic features involved in drought stress tolerance mechanisms in peanut nodules and their contribution to biological nitrogen fixation. Plant Science, 263, 12–22. https://doi.org/10.1016/j.plantsci.2017.06.009
  22. Gamalero, E. y Glick, B. R. (2015). Bacterial modulation of plant ethylene levels. Plant Physiology, 169(1), 13–22. https://doi.org/10.1104/pp.15.00284
  23. Ghosh, S. K., Bera, T., & Chakrabarty, A. M. (2020). Microbial siderophore – A boon to agricultural sciences. Biological Control, 144, 104214. https://doi.org/10.1016/j.biocontrol.2020.104214
  24. Gomes, A. M. F., Rodrigues, A. P., António, C., Rodrigues, A. M., Leitão, A. E., Batista-Santos, P., Nhantumbo, N., Massinga, R., Ribeiro-Barros, A. I. y Ramalho, J. C. (2020). Drought response of cowpea (Vigna unguiculata (L.) Walp.) landraces at leaf physiological and metabolite profile levels. Environmental and Experimental Botany, 175, 104060. https://doi.org/10.1016/j.envexpbot.2020.104060
  25. Gopalakrishnan, S., Sathya, A., Vijayabharathi, R., Varshney, R. K., Gowda, C. L. L.y Krishnamurthy, L. (2015). Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech, 5(4), 355–377. https://doi.org/10.1007/s13205-014-0241-x
  26. Goswami, M. y Deka, S. (2020). Plant growth-promoting rhizobacteria—alleviators of abiotic stresses in soil: A review. Pedosphere, 30(1), 40–61. https://doi.org/10.1016/S1002-0160(19)60839-8
  27. Haller, A. y Branca, D. (2020). Montología: una perspectiva de montaña hacia la investigación transdisciplinaria y el desarrollo sustentable. Revista de Investigaciones Altoandinas - Journal of High Andean Research, 22(4), 313–332. https://doi.org/10.18271/ria.2020.193
  28. Hussain, H. A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S. A., Men, S. y Wang, L. (2018). Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. Frontiers in Plant Science, 9, 1–21. https://doi.org/10.3389/fpls.2018.00393
  29. Igiehon, N. O., Babalola, O. O. y Aremu, B. R. (2019). Genomic insights into plant growth promoting rhizobia capable of enhancing soybean germination under drought stress. BMC Microbiology, 19(1), 1–22. https://doi.org/10.1186/s12866-019-1536-1
  30. Joshi, R., Wani, S. H., Singh, B., Bohra, A., Dar, Z. A., Lone, A. A., Pareek, A., y Singla-Pareek, S. L. (2016). Transcription factors and plants response to drought stress: Current understanding and future directions. Frontiers in Plant Science, 7(2016JULY), 1–15. https://doi.org/10.3389/fpls.2016.01029
  31. Khan, N., Bano, A., Rahman, M. A., Guo, J., Kang, Z. y Babar, M. A. (2019). Comparative Physiological and Metabolic Analysis Reveals a Complex Mechanism Involved in Drought Tolerance in Chickpea (Cicer arietinum L.) Induced by PGPR and PGRs. Scientific Reports, 9(1), 1–19. https://doi.org/10.1038/s41598-019-38702-8
  32. Kumar Ahirwar, N., Singh, R., Chaurasia, S., Chandra, R., Prajapati, S. y Ramana, S. (2019). Effective Role of Beneficial Microbes in Achieving the Sustainable Agriculture and Eco-Friendly Environment Development Goals: A Review. Frontiers in Environmental Microbiology, 5(6), 111. https://doi.org/10.11648/j.fem.20190506.12
  33. Kunert, K. J., Vorster, B. J., Fenta, B. A., Kibido, T., Dionisio, G. y Foyer, C. H. (2016). Drought stress responses in soybean roots and nodules. Frontiers in Plant Science, 7, 1–7. https://doi.org/10.3389/fpls.2016.01015
  34. Kunrath, T. R., Lemaire, G., Sadras, V. O. y Gastal, F. (2018). Water use efficiency in perennial forage species: Interactions between nitrogen nutrition and water deficit. Field Crops Research, 222, 1–11. https://doi.org/10.1016/j.fcr.2018.02.031
  35. Lamaoui, M., Jemo, M., Datla, R. y Bekkaoui, F. (2018). Heat and drought stresses in crops and approaches for their mitigation. Frontiers in Chemistry, 6, 1–14. https://doi.org/10.3389/fchem.2018.00026
  36. Le Quéré, A., Tak, N., Gehlot, H. S., Lavire, C., Meyer, T., Chapulliot, D., Rathi, S., Sakrouhi, I., Rocha, G., Rohmer, M., Severac, D., Filali-Maltouf, A. y Munive, J. A. (2017). Genomic characterization of Ensifer aridi, a proposed new species of nitrogen-fixing rhizobium recovered from Asian, African and American deserts. BMC Genomics, 18(1), 1–24. https://doi.org/10.1186/s12864-016-3447-y
  37. Lebrazi, S., Fadil, M., Chraibi, M. y Fikri-Benbrahim, K. (2020). Screening and optimization of indole-3-acetic acid production by Rhizobium sp. strain using response surface methodology. Journal of Genetic Engineering and Biotechnology, 18(1). https://doi.org/10.1186/s43141-020-00035-9
  38. Liu, Z., Li, Y. C., Zhang, S., Fu, Y., Fan, X., Patel, J. S. y Zhang, M. (2015). Characterization of phosphate-solubilizing bacteria isolated from calcareous soils. Applied Soil Ecology, 96, 217–224. https://doi.org/10.1016/j.apsoil.2015.08.003
  39. Mathobo, R., Marais, D. y Steyn, J. M. (2017). The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.). Agricultural Water Management, 180, 118–125. https://doi.org/10.1016/j.agwat.2016.11.005
  40. Mouradi, M., Bouizgaren, A., Farissi, M., Makoudi, B., Kabbadj, A., Very, A. A., Sentenac, H., Qaddoury, A. y Ghoulam, C. (2016). Osmopriming improves seeds germination, growth, antioxidant responses and membrane stability during early stage of moroccan alfalfa populations under water deficit. Chilean Journal of Agricultural Research, 76(3), 265–272. https://doi.org/10.4067/S0718-58392016000300002
  41. Nadeem, M., Li, J., Yahya, M., Sher, A., Ma, C., Wang, X. y Qiu, L. (2019). Research Progress and Perspective on Drought Stress in Legumes: A Review. International Journal of Molecular Sciences, 20(10). https://doi.org/10.3390/ijms20102541
  42. Nascimento, F. X., Rossi, M. J. y Glick, B. R. (2018). Ethylene and 1-aminocyclopropane-1-carboxylate (ACC) in plant–bacterial interactions. Frontiers in Plant Science, 9, 1–17. https://doi.org/10.3389/fpls.2018.00114
  43. Naseem, H., Ahsan, M., Shahid, M. A. y Khan, N. (2018). Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. Journal of Basic Microbiology, 58(12), 1009–1022. https://doi.org/10.1002/jobm.201800309
  44. Naveed M., Hussain B., Mehboob I. y Zair A. (2017). Rhizobial amelioration of drought stress in legumes. En, M. J. Zaidi y A. Khan (Eds.), Microbes for Legume Improvement (pp. 277–299). Springer. https://doi.org/10.1007/978-3-319-59174-2
  45. Ngumbi, E. y Kloepper, J. (2016). Bacterial-mediated drought tolerance: Current and future prospects. Applied Soil Ecology, 105, 109–125. https://doi.org/10.1016/j.apsoil.2016.04.009
  46. Ojuederie, O. B., Olanrewaju, O. S. y Babalola, O. O. (2019). Plant growth promoting rhizobacterial mitigation of drought stress in crop plants: Implications for sustainable agriculture. Agronomy, 9(11). https://doi.org/10.3390/agronomy9110712
  47. Olanrewaju, O. S., Glick, B. R. y Babalola, O. O. (2017). Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology, 33(11), 1–16. https://doi.org/10.1007/s11274-017-2364-9
  48. Pereyra, G., Hartmann, H., Michalzik, B., Ziegler, W. y Trumbore, S. (2015). Influence of rhizobia inoculation on biomass gain and tissue nitrogen content of Leucaena leucocephala seedlings under drought. Forests, 6(10), 3686–3703. https://doi.org/10.3390/f6103686
  49. Pérez-Montaño, F., Alías-Villegas, C., Bellogín, R. A., Del Cerro, P., Espuny, M. R., Jiménez-Guerrero, I., López-Baena, F. J., Ollero, F. J. y Cubo, T. (2014). Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiological Research, 169(5–6), 325–336. https://doi.org/10.1016/j.micres.2013.09.011
  50. Rani, A., Devi, P., Jha, U. C., Sharma, K. D., Siddique, K. H. M. y Nayyar, H. (2020). Developing Climate-Resilient Chickpea Involving Physiological and Molecular Approaches With a Focus on Temperature and Drought Stresses. Frontiers in Plant Science, 10(February), 1–29. https://doi.org/10.3389/fpls.2019.01759
  51. Rodiño, A. P., Riveiro, M. y De Ron, A. M. (2020). Implications of the Symbiotic Nitrogen Fixation in Common Bean under Seasonal Water Stress. Agronomy, 11(1), 70. https://doi.org/10.3390/agronomy11010070
  52. Rodrigo da-Silva, J., Alexandre, A., Brígido, C. y Oliveira, S. (2017). Can stress response genes be used to improve the symbiotic performance of rhizobia? AIMS Microbiology, 3(3), 365–382. https://doi.org/10.3934/microbiol.2017.3.365
  53. Rossi, F., Mugnai, G. y De Philippis, R. (2018). Complex role of the polymeric matrix in biological soil crusts. Plant and Soil, 429(1–2), 19–34. https://doi.org/10.1007/s11104-017-3441-4
  54. Samarakoon, S. M. N. S. y Rajapakse, S. (2020). Identification of stress tolerant rhizobial strains inhabiting Gliricidia sepium in Polonnaruwa district, Sri Lanka. Ceylon Journal of Science, 49(1), 37. https://doi.org/10.4038/cjs.v49i1.7704
  55. Seleiman, M. F., Al-suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-wajid, H. H. y Battaglia, M. L. (2021). Alleviate Its Adverse Effects. Plants, 10(2), 1–25. https://doi.org/10.3390/plants10020259
  56. Staudinger, C., Mehmeti-Tershani, V., Gil-Quintana, E., Gonzalez, E. M., Hofhansl, F., Bachmann, G. y Wienkoop, S. (2016). Evidence for a rhizobia-induced drought stress response strategy in Medicago truncatula. Journal of Proteomics, 136(February), 202–213. https://doi.org/10.1016/j.jprot.2016.01.006
  57. Ullah, S., Khan, M. Y., Asghar, H. N., Akhtar, M. J. y Zahir, Z. A. (2017). Differential response of single and co-inoculation of Rhizobium leguminosarum and Mesorhizobium ciceri for inducing water deficit stress tolerance in wheat. Annals of Microbiology, 67(11), 739–749. https://doi.org/10.1007/s13213-017-1302-2
  58. Velázquez, E., Carro, L., Flores-Félix, J. D., Menéndez, E., Ramírez-Bahena, M.-H., y Peix, A. (2019). Bacteria-Inducing Legume Nodules Involved in the Improvement of Plant Growth, Health and Nutrition. Microbiome in Plant Health and Disease, 79–104. https://doi.org/10.1007/978-981-13-8495-0_4
  59. Vieira, J. D., Da Silva, P. R. D. y Stefenon, V. M. (2017). In vitro growth and indoleacetic acid production by Mesorhizobium loti SEMIA806 and SEMIA816 under the influence of copper ions. Microbiology Research, 8(2), 55–58. https://doi.org/10.4081/mr.2017.7302
  60. Xiong, R., Liu, S., Considine, M. J., Siddique, K. H. M., Lam, H. M. y Chen, Y. (2020). Root system architecture, physiological and transcriptional traits of soybean (Glycine max L.) in response to water deficit: A review. Physiologia Plantarum, 1–14. https://doi.org/10.1111/ppl.13201
  61. Yanni, Y., Zidan, M., Dazzo, F., Rizk, R., Mehesen, A., Abdelfattah, F. y Elsadany, A. (2016). Enhanced symbiotic performance and productivity of drought stressed common bean after inoculation with tolerant native rhizobia in extensive fields. Agriculture, Ecosystems and Environment, 232, 119–128. https://doi.org/10.1016/j.agee.2016.07.006