Published 2021-10-31
Keywords
- Stress,
- drought,
- plant quality,
- bacterial inactivation,
- total nitrogen
How to Cite
Abstract
Drought is one of the main limitations of agricultural productivity and food security, in Andean mountain. The use of atmospheric nitrogen-fixing rhizobia in symbiosis with legumes, and tolerant to a wide range of adverse conditions, such as drought, is a great potential in sustainable agriculture. The aim of this review is to compile studies about drought stress effect on the legume-rhizobia symbiosis and rhizobia mechanisms to induce drought tolerance in legumes. The search for information was conducted from August to December 2020, using key terms. The drought effect on the nodulation and atmospheric nitrogen fixation process is made known, as well as the rhizobia ability to synthesize exopolysaccharides, enzymes, phytohormones, siderophores, osmolytes and solubilize phosphates as induction mechanisms to mitigate drought stress in legumes. This review will serve to propose future research using rhizobia to mitigate the drought effect on the legumes cultivation in environments such as the Andean mountains.
References
- Adessi, A., Cruz de Carvalho, R., De Philippis, R., Branquinho, C. y Marques da Silva, J. (2018). Microbial extracellular polymeric substances improve water retention in dryland biological soil crusts. Soil Biology and Biochemistry, 116, 67–69. https://doi.org/10.1016/j.soilbio.2017.10.002
- Atieno, M. y Lesueur, D. (2019). Opportunities for improved legume inoculants: enhanced stress tolerance of rhizobia and benefits to agroecosystems. In Symbiosis 77(3), 191–205. https://doi.org/10.1007/s13199-018-0585-9
- Ayangbenro, A. S. y Babalola, O. O. (2021). Reclamation of arid and semi-arid soils: The role of plant growth-promoting archaea and bacteria. Current Plant Biology, 25, 100173. https://doi.org/10.1016/j.cpb.2020.100173
- Belimov, A. A., Zinovkina, N. Y., Safronova, V. I., Litvinsky, V. A., Nosikov, V. V., Zavalin, A. A. y Tikhonovich, I. A. (2019). Rhizobial ACC deaminase contributes to efficient symbiosis with pea (Pisum sativum L.) under single and combined cadmium and water deficit stress. Environmental and Experimental Botany, 167, 103859. https://doi.org/10.1016/j.envexpbot.2019.103859
- Bérard, A., Sassi, M. Ben, Kaisermann, A. y Renault, P. (2015). Soil microbial community responses to heat wave components: Drought and high temperature. Climate Research, 66(3), 243–264. https://doi.org/10.3354/cr01343
- Bouchiba, Z., Boukhatem, Z. F., Ighilhariz, Z., Derkaoui, N., Kerdouh, B., Abdelmoumen, H., Abbas, Y., Missbah El Idrissi, M. y Bekki, A. (2017). Diversity of nodular bacteria of Scorpiurus muricatus in western Algeria and their impact on plant growth. Canadian Journal of Microbiology, 63(5), 450–463. https://doi.org/10.1139/cjm-2016-0493
- Choudhury, F. K., Rivero, R. M., Blumwald, E. y Mittler, R. (2017). Reactive oxygen species, abiotic stress and stress combination. Plant Journal, 90(5), 856–867. https://doi.org/10.1111/tpj.13299
- Das, K., Prasanna, R. y Saxena, A. K. (2017). Rhizobia: a potential biocontrol agent for soilborne fungal pathogens. Folia Microbiologica, 62(5), 425–435. https://doi.org/10.1007/s12223-017-0513-z
- Defez, R., Andreozzi, A., Dickinson, M., Charlton, A., Tadini, L., Pesaresi, P. y Bianco, C. (2017). Improved drought stress response in alfalfa plants nodulated by an IAA over-producing Rhizobium Strain. Frontiers in Microbiology, 8, 1–13. https://doi.org/10.3389/fmicb.2017.02466
- Deng, J., Orner, E. P., Chau, J. F., Anderson, E. M., Kadilak, A. L., Rubinstein, R. L., Bouchillon, G. M., Goodwin, R. A., Gage, D. J. y Shor, L. M. (2015). Synergistic effects of soil microstructure and bacterial EPS on drying rate in emulated soil micromodels. Soil Biology and Biochemistry, 83, 116–124. https://doi.org/10.1016/j.soilbio.2014.12.006
- Dhull, S., Gera, R., Sheoran, H. S. y Kakar, R. (2018). Phosphate Solubilization Activity of Rhizobial Strains Isolated From Root Nodule of Cluster Bean Plant Native to Indian Soils. International Journal of Current Microbiology and Applied Sciences, 7(4), 255–266. https://doi.org/10.20546/ijcmas.2018.704.029
- Drenkhan, F. (2016). En la sombra del Cambio Global: hacia una gestión integrada y adaptativa de recursos hídricos en los Andes del Perú. Espacio y Desarrollo, 51(28), 25–51. https://doi.org/10.18800/espacioydesarrollo.201601.002
- Egamberdieva, D., Reckling, M. y Wirth, S. (2017). Biochar-based Bradyrhizobium inoculum improves growth of lupin (Lupinus angustifolius L.) under drought stress. European Journal of Soil Biology, 78, 38–42. https://doi.org/10.1016/j.ejsobi.2016.11.007
- Enebe, M. C. y Babalola, O. O. (2018). The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. Applied Microbiology and Biotechnology, 102(18), 7821–7835. https://doi.org/10.1007/s00253-018-9214-z
- Escobar-Mamani, F., Branca, D. y Haller, A. (2020). Investigación de montaña sobre y para la región andina. Revista de Investigaciones Altoandinas - Journal of High Andean Research, 22(4), 311–312. https://doi.org/10.18271/ria.2020.191
- Etesami, H. (2020). Plant–microbe interactions in plants and stress tolerance. En, D. K. Tripathi, V. P. Singh, D. Chauhan, S. Sharma, S. Prasad, N. Dubey y N. Ramawat (Eds.), Plant Life Under Changing Environment. Responses and management (pp. 355-396). Elsevier. https://doi.org/10.1016/b978-0-12-818204-8.00018-7
- Etesami, H. y Maheshwari, D. K. (2018). Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicology and Environmental Safety, 156, 225–246. https://doi.org/10.1016/j.ecoenv.2018.03.013
- Farooq, M., Gogoi, N., Barthakur, S., Baroowa, B., Bharadwaj, N., Alghamdi, S. S. y Siddique, K. H. M. (2017). Drought Stress in Grain Legumes during Reproduction and Grain Filling. Journal of Agronomy and Crop Science, 203(2), 81–102. https://doi.org/10.1111/jac.12169
- Farooq, Muhammad, Hussain, M., Usman, M., Farooq, S., Alghamdi, S. S. y Siddique, K. H. M. (2018). Impact of Abiotic Stresses on Grain Composition and Quality in Food Legumes. Journal of Agricultural and Food Chemistry, 66(34), 8887–8897. https://doi.org/10.1021/acs.jafc.8b02924
- Flores-Félix, J. D., Carro, L., Cerda-Castillo, E., Squartini, A., Rivas, R. y Velázquez, E. (2020). Analysis of the interaction between Pisum sativum and Rhizobium laguerreae strains nodulating this legume in Northwest Spain. Plants, 9(12), 1–16. https://doi.org/10.3390/plants9121755
- Furlan, A. L., Bianucci, E., Castro, S., & Dietz, K. J. (2017). Metabolic features involved in drought stress tolerance mechanisms in peanut nodules and their contribution to biological nitrogen fixation. Plant Science, 263, 12–22. https://doi.org/10.1016/j.plantsci.2017.06.009
- Gamalero, E. y Glick, B. R. (2015). Bacterial modulation of plant ethylene levels. Plant Physiology, 169(1), 13–22. https://doi.org/10.1104/pp.15.00284
- Ghosh, S. K., Bera, T., & Chakrabarty, A. M. (2020). Microbial siderophore – A boon to agricultural sciences. Biological Control, 144, 104214. https://doi.org/10.1016/j.biocontrol.2020.104214
- Gomes, A. M. F., Rodrigues, A. P., António, C., Rodrigues, A. M., Leitão, A. E., Batista-Santos, P., Nhantumbo, N., Massinga, R., Ribeiro-Barros, A. I. y Ramalho, J. C. (2020). Drought response of cowpea (Vigna unguiculata (L.) Walp.) landraces at leaf physiological and metabolite profile levels. Environmental and Experimental Botany, 175, 104060. https://doi.org/10.1016/j.envexpbot.2020.104060
- Gopalakrishnan, S., Sathya, A., Vijayabharathi, R., Varshney, R. K., Gowda, C. L. L.y Krishnamurthy, L. (2015). Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech, 5(4), 355–377. https://doi.org/10.1007/s13205-014-0241-x
- Goswami, M. y Deka, S. (2020). Plant growth-promoting rhizobacteria—alleviators of abiotic stresses in soil: A review. Pedosphere, 30(1), 40–61. https://doi.org/10.1016/S1002-0160(19)60839-8
- Haller, A. y Branca, D. (2020). Montología: una perspectiva de montaña hacia la investigación transdisciplinaria y el desarrollo sustentable. Revista de Investigaciones Altoandinas - Journal of High Andean Research, 22(4), 313–332. https://doi.org/10.18271/ria.2020.193
- Hussain, H. A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S. A., Men, S. y Wang, L. (2018). Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. Frontiers in Plant Science, 9, 1–21. https://doi.org/10.3389/fpls.2018.00393
- Igiehon, N. O., Babalola, O. O. y Aremu, B. R. (2019). Genomic insights into plant growth promoting rhizobia capable of enhancing soybean germination under drought stress. BMC Microbiology, 19(1), 1–22. https://doi.org/10.1186/s12866-019-1536-1
- Joshi, R., Wani, S. H., Singh, B., Bohra, A., Dar, Z. A., Lone, A. A., Pareek, A., y Singla-Pareek, S. L. (2016). Transcription factors and plants response to drought stress: Current understanding and future directions. Frontiers in Plant Science, 7(2016JULY), 1–15. https://doi.org/10.3389/fpls.2016.01029
- Khan, N., Bano, A., Rahman, M. A., Guo, J., Kang, Z. y Babar, M. A. (2019). Comparative Physiological and Metabolic Analysis Reveals a Complex Mechanism Involved in Drought Tolerance in Chickpea (Cicer arietinum L.) Induced by PGPR and PGRs. Scientific Reports, 9(1), 1–19. https://doi.org/10.1038/s41598-019-38702-8
- Kumar Ahirwar, N., Singh, R., Chaurasia, S., Chandra, R., Prajapati, S. y Ramana, S. (2019). Effective Role of Beneficial Microbes in Achieving the Sustainable Agriculture and Eco-Friendly Environment Development Goals: A Review. Frontiers in Environmental Microbiology, 5(6), 111. https://doi.org/10.11648/j.fem.20190506.12
- Kunert, K. J., Vorster, B. J., Fenta, B. A., Kibido, T., Dionisio, G. y Foyer, C. H. (2016). Drought stress responses in soybean roots and nodules. Frontiers in Plant Science, 7, 1–7. https://doi.org/10.3389/fpls.2016.01015
- Kunrath, T. R., Lemaire, G., Sadras, V. O. y Gastal, F. (2018). Water use efficiency in perennial forage species: Interactions between nitrogen nutrition and water deficit. Field Crops Research, 222, 1–11. https://doi.org/10.1016/j.fcr.2018.02.031
- Lamaoui, M., Jemo, M., Datla, R. y Bekkaoui, F. (2018). Heat and drought stresses in crops and approaches for their mitigation. Frontiers in Chemistry, 6, 1–14. https://doi.org/10.3389/fchem.2018.00026
- Le Quéré, A., Tak, N., Gehlot, H. S., Lavire, C., Meyer, T., Chapulliot, D., Rathi, S., Sakrouhi, I., Rocha, G., Rohmer, M., Severac, D., Filali-Maltouf, A. y Munive, J. A. (2017). Genomic characterization of Ensifer aridi, a proposed new species of nitrogen-fixing rhizobium recovered from Asian, African and American deserts. BMC Genomics, 18(1), 1–24. https://doi.org/10.1186/s12864-016-3447-y
- Lebrazi, S., Fadil, M., Chraibi, M. y Fikri-Benbrahim, K. (2020). Screening and optimization of indole-3-acetic acid production by Rhizobium sp. strain using response surface methodology. Journal of Genetic Engineering and Biotechnology, 18(1). https://doi.org/10.1186/s43141-020-00035-9
- Liu, Z., Li, Y. C., Zhang, S., Fu, Y., Fan, X., Patel, J. S. y Zhang, M. (2015). Characterization of phosphate-solubilizing bacteria isolated from calcareous soils. Applied Soil Ecology, 96, 217–224. https://doi.org/10.1016/j.apsoil.2015.08.003
- Mathobo, R., Marais, D. y Steyn, J. M. (2017). The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.). Agricultural Water Management, 180, 118–125. https://doi.org/10.1016/j.agwat.2016.11.005
- Mouradi, M., Bouizgaren, A., Farissi, M., Makoudi, B., Kabbadj, A., Very, A. A., Sentenac, H., Qaddoury, A. y Ghoulam, C. (2016). Osmopriming improves seeds germination, growth, antioxidant responses and membrane stability during early stage of moroccan alfalfa populations under water deficit. Chilean Journal of Agricultural Research, 76(3), 265–272. https://doi.org/10.4067/S0718-58392016000300002
- Nadeem, M., Li, J., Yahya, M., Sher, A., Ma, C., Wang, X. y Qiu, L. (2019). Research Progress and Perspective on Drought Stress in Legumes: A Review. International Journal of Molecular Sciences, 20(10). https://doi.org/10.3390/ijms20102541
- Nascimento, F. X., Rossi, M. J. y Glick, B. R. (2018). Ethylene and 1-aminocyclopropane-1-carboxylate (ACC) in plant–bacterial interactions. Frontiers in Plant Science, 9, 1–17. https://doi.org/10.3389/fpls.2018.00114
- Naseem, H., Ahsan, M., Shahid, M. A. y Khan, N. (2018). Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. Journal of Basic Microbiology, 58(12), 1009–1022. https://doi.org/10.1002/jobm.201800309
- Naveed M., Hussain B., Mehboob I. y Zair A. (2017). Rhizobial amelioration of drought stress in legumes. En, M. J. Zaidi y A. Khan (Eds.), Microbes for Legume Improvement (pp. 277–299). Springer. https://doi.org/10.1007/978-3-319-59174-2
- Ngumbi, E. y Kloepper, J. (2016). Bacterial-mediated drought tolerance: Current and future prospects. Applied Soil Ecology, 105, 109–125. https://doi.org/10.1016/j.apsoil.2016.04.009
- Ojuederie, O. B., Olanrewaju, O. S. y Babalola, O. O. (2019). Plant growth promoting rhizobacterial mitigation of drought stress in crop plants: Implications for sustainable agriculture. Agronomy, 9(11). https://doi.org/10.3390/agronomy9110712
- Olanrewaju, O. S., Glick, B. R. y Babalola, O. O. (2017). Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology, 33(11), 1–16. https://doi.org/10.1007/s11274-017-2364-9
- Pereyra, G., Hartmann, H., Michalzik, B., Ziegler, W. y Trumbore, S. (2015). Influence of rhizobia inoculation on biomass gain and tissue nitrogen content of Leucaena leucocephala seedlings under drought. Forests, 6(10), 3686–3703. https://doi.org/10.3390/f6103686
- Pérez-Montaño, F., Alías-Villegas, C., Bellogín, R. A., Del Cerro, P., Espuny, M. R., Jiménez-Guerrero, I., López-Baena, F. J., Ollero, F. J. y Cubo, T. (2014). Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiological Research, 169(5–6), 325–336. https://doi.org/10.1016/j.micres.2013.09.011
- Rani, A., Devi, P., Jha, U. C., Sharma, K. D., Siddique, K. H. M. y Nayyar, H. (2020). Developing Climate-Resilient Chickpea Involving Physiological and Molecular Approaches With a Focus on Temperature and Drought Stresses. Frontiers in Plant Science, 10(February), 1–29. https://doi.org/10.3389/fpls.2019.01759
- Rodiño, A. P., Riveiro, M. y De Ron, A. M. (2020). Implications of the Symbiotic Nitrogen Fixation in Common Bean under Seasonal Water Stress. Agronomy, 11(1), 70. https://doi.org/10.3390/agronomy11010070
- Rodrigo da-Silva, J., Alexandre, A., Brígido, C. y Oliveira, S. (2017). Can stress response genes be used to improve the symbiotic performance of rhizobia? AIMS Microbiology, 3(3), 365–382. https://doi.org/10.3934/microbiol.2017.3.365
- Rossi, F., Mugnai, G. y De Philippis, R. (2018). Complex role of the polymeric matrix in biological soil crusts. Plant and Soil, 429(1–2), 19–34. https://doi.org/10.1007/s11104-017-3441-4
- Samarakoon, S. M. N. S. y Rajapakse, S. (2020). Identification of stress tolerant rhizobial strains inhabiting Gliricidia sepium in Polonnaruwa district, Sri Lanka. Ceylon Journal of Science, 49(1), 37. https://doi.org/10.4038/cjs.v49i1.7704
- Seleiman, M. F., Al-suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-wajid, H. H. y Battaglia, M. L. (2021). Alleviate Its Adverse Effects. Plants, 10(2), 1–25. https://doi.org/10.3390/plants10020259
- Staudinger, C., Mehmeti-Tershani, V., Gil-Quintana, E., Gonzalez, E. M., Hofhansl, F., Bachmann, G. y Wienkoop, S. (2016). Evidence for a rhizobia-induced drought stress response strategy in Medicago truncatula. Journal of Proteomics, 136(February), 202–213. https://doi.org/10.1016/j.jprot.2016.01.006
- Ullah, S., Khan, M. Y., Asghar, H. N., Akhtar, M. J. y Zahir, Z. A. (2017). Differential response of single and co-inoculation of Rhizobium leguminosarum and Mesorhizobium ciceri for inducing water deficit stress tolerance in wheat. Annals of Microbiology, 67(11), 739–749. https://doi.org/10.1007/s13213-017-1302-2
- Velázquez, E., Carro, L., Flores-Félix, J. D., Menéndez, E., Ramírez-Bahena, M.-H., y Peix, A. (2019). Bacteria-Inducing Legume Nodules Involved in the Improvement of Plant Growth, Health and Nutrition. Microbiome in Plant Health and Disease, 79–104. https://doi.org/10.1007/978-981-13-8495-0_4
- Vieira, J. D., Da Silva, P. R. D. y Stefenon, V. M. (2017). In vitro growth and indoleacetic acid production by Mesorhizobium loti SEMIA806 and SEMIA816 under the influence of copper ions. Microbiology Research, 8(2), 55–58. https://doi.org/10.4081/mr.2017.7302
- Xiong, R., Liu, S., Considine, M. J., Siddique, K. H. M., Lam, H. M. y Chen, Y. (2020). Root system architecture, physiological and transcriptional traits of soybean (Glycine max L.) in response to water deficit: A review. Physiologia Plantarum, 1–14. https://doi.org/10.1111/ppl.13201
- Yanni, Y., Zidan, M., Dazzo, F., Rizk, R., Mehesen, A., Abdelfattah, F. y Elsadany, A. (2016). Enhanced symbiotic performance and productivity of drought stressed common bean after inoculation with tolerant native rhizobia in extensive fields. Agriculture, Ecosystems and Environment, 232, 119–128. https://doi.org/10.1016/j.agee.2016.07.006