Vol. 24 Núm. 2 (2022)
Artículo original

Digestibilidad proteica de semillas de Pajuro (Erythrina edulis Triana) sometidas a cocción tradicional

VICTOR DANIEL DELGADO SORIANO
UNIVERSIDAD NACIONAL AGRARIA LA MOLINA
Paola Cortés-Avendaño
Facultad de Industrias Alimentarias de la Universidad Nacional Agraria La Molina
Américo Guevara-Pérez
Facultad de Industrias Alimentarias de la Universidad Nacional Agraria La Molina
Carlos Vílchez-Perales
Facultad de Industrias Alimentarias de la Universidad Nacional Agraria La Molina

Publicado 2022-05-16

Palabras clave

  • Biodisponibilidad, valor biológico, nitrógeno retenido, conversión alimenticia, pajuro.

Cómo citar

DELGADO SORIANO, V. D., Cortés-Avendaño, P. ., Guevara-Pérez, A. ., & Vílchez-Perales, C. . (2022). Digestibilidad proteica de semillas de Pajuro (Erythrina edulis Triana) sometidas a cocción tradicional. Revista De Investigaciones Altoandinas, 24(2), 75–83. https://doi.org/10.18271/ria.2022.333

Resumen

Se determinó la digestibilidad proteica de las semillas de pajuro (Erythrina edulis Triana) después del proceso de cocción tradicional. Las semillas procesadas fueron secadas, molidas e incorporadas en dietas isoproteicas e isocalóricas para su evaluación con ratas Holtzman. Se realizó un análisis de varianza (ANOVA) de una sola vía con la prueba de comparación múltiple de Tukey para determinar diferencias significativas (p < 0,05) en los valores de composición proximal y un análisis de correlación entre consumo de proteína/ganancias de peso y consumo de alimento/ganancia de peso. Se obtuvo un valor de proteína de 20,58 en las semillas de pajuro cocidas, y valores de 25,89, 2,97 y 45,56 para consumo de alimento, ganancia de peso y tasa de crecimiento específica, respectivamente. Respecto a los indicadores de calidad proteica se obtuvo un balance de nitrógeno positivo con un valor de 0,19, valor biológico de 65,52%, digestibilidad aparente de 67,44% y digestibilidad verdadera de 76,74%; asimismo, teniendo en cuenta la presencia de aminoácidos azufrados como limitantes, se determinó un valor de 0,36 para el cómputo teórico de aminoácidos, un cómputo teórico de aminoácidos corregido en función de la digestibilidad de 28 y un cómputo teórico de aminoácidos esenciales digestibles de 26. Estos resultados colocan a la cocción tradicional como un proceso tecnológico que facilita el consumo de las semillas de pajuro producido en los andes tropicales, mejorando de esta manera su aprovechamiento y satisfacción de las necesidades del consumidor; sin embargo, resulta necesaria la complementación con otras fuentes alimentarias proteicas o incorporación de aminoácidos sintéticos para suplir la presencia de aminoácidos limitantes.  

Citas

  1. Agengo, F., Onyango, A., Serrem, C. y Okoth, J. (2020). Efficacy of compositing with snail meat powder on protein nutritional quality of sorghum–wheat buns using a rat bioassay. Journal of the Science of Food and Agriculture, 100, 2963–2970. https://doi.org/10.1002/jsfa.10324
  2. Alonso, R., Grant, G., Dewey, P. y Marzo, F. (2000). Nutritional Assessment in Vitro and in Vivo of Raw and Extruded Peas (Pisum sativum L.). Journal of Agricultural and Food Chemistry, 48, 2286–2290. https://doi.org/10.1021/jf000095o
  3. AOAC (Association of Official Analytical Chemists). 2005. Official Methods of Analysis. 18th Edition. Washington. USA.
  4. Apaza, M. (2019). Efecto del consumo de cultivos andinos quinua, cañihua y tarwi sobre el incremento de peso y nitrógeno retenido en ratas Wistar. Revista de Investigaciones Altoandinas, 21(3), 194–204. https://doi.org/10.18271/ria.2019.477
  5. Berryman, C., Lieberman, H., Fulgoni, V. y Pasiakos, S. (2018). Protein intake trends and conformity with the dietary reference intakes in the United States: Analysis of the national health and nutrition examination survey, 2001–2014. The American Journal of Clinical Nutrition, 108, 1–9. https://doi.org/10.1093/ajcn/nqy088
  6. Burgos-Díaz, C., Opazo-Navarrete, M., Wandersleben, T., Soto-Añual, M., Barahona, T. y Bustamante, M. (2019). Chemical and Nutritional Evaluation of Protein-Rich Ingredients Obtained through a Technological Process from Yellow Lupin Seeds (Lupinus luteus). Plant Foods for Human Nutrition, 74(4), 508–517. https://doi.org/10.1007/s11130-019-00768-0
  7. da Silva Teba, C., da Silva, E., Chávez, D., de Carvalho, C. y Ascheri, J. (2017). Effects of whey protein concentrate, feed moisture and temperature on the physicochemical characteristics of a rice-based extruded flour. Food Chemistry, 228, 287–296. https://doi.org/10.1016/j.foodchem.2017.01.145
  8. Delgado-Soriano, V., Cortés-Avendaño, P., Guevara-Pérez, A. y Vílchez-Perales, C. (2020). Características físico-químicas de las semillas de pajuro (Erythrina edulis Triana) y propiedades funcionales después de la extrusión. Revista de Investigaciones Altoandinas, 22(3), 263 – 273. https://doi.org/10.18271/ria.2020.660
  9. Díaz, J. (1999). Evaluación de la calidad de la proteína en cinco variedades de frejol común (Phaseolus vulgaris) y su relación con el contenido de taninos. Tesis para optar el grado de Magister Scientiae en Nutrición. Universidad Nacional Agraria la Molina. Lima, Perú. 132 pp.
  10. Escamilo, S. (2012). El Pajuro (Erythrina edulis) alimento andino en extinción. Investigaciones Sociales, 16(28), 97–104. https://doi.org/10.15381/is.v16i28.7389.
  11. Escobar-Mamani, F., Branca, D. y Haller, A. (2020). Investigación de montaña sobre y para la región andina. Revista de Investigaciones Altoandinas - Journal of High Andean Research, 22(4), 311–312. https://doi.org/10.18271/ria.2020.191
  12. FAO/WHO. (1991). Protein Quality Evaluation. Report of the Joint FAO/WHO Expert Consultation. Rome, Italy. Recuperado de https://bit.ly/3bspwcD
  13. FAO/WHO. (2013). Dietary Protein Quality Evaluation in Human Nutrition Report of an FAO Expert Consultation. Rome, Italy. Recuperado de https://bit.ly/3ydQT41
  14. FAO/WHO/UNU. (2007). Joint of Expert Consultation on Protein and Amino Acid Requirements in Human Nutrition. Geneva, Suiza. Recuperado de https://bit.ly/3fqDvAS
  15. Frias, J., Giacomino, S., Peñas, E., Pellegrino, N., Ferreyra, V., Apro, N., Olivera, M. y Vidal-Valverde, C. (2011). Assessment of the nutritional quality of raw and extruded Pisum sativum L. var. laguna seeds. LWT - Food Science and Technology, 44, 1303–1308. https://doi.org/10.1016/j.lwt.2010.12.025
  16. Guerra-Almonacid, C., Torruco-Uco, J., Murillo-Arango, W., Méndez-Arteaga, J. y Rodríguez-Miranda, J. (2019). Effect of ultrasound pretreatment on the antioxidant capacity and antihypertensive activity of bioactive peptides obtained from the protein hydrolysates of Erythrina edulis. Emirates Journal of Food and Agriculture, 31(4), 288–296. https://doi.org/10.9755/ejfa.2019.v31.i4.1938
  17. Haller, A. y Branca, D. (2020). Montología: una perspectiva de montaña hacia la investigación transdisciplinaria y el desarrollo sustentable. Journal of High Andean Research, 22(4), 313–332. https://doi.org/10.18271/ria.2020.193
  18. Hooper, S., Glahn, R. y Cichy, K. (2019). Single Varietal Dry Bean (Phaseolus vulgaris L.) Pastas: Nutritional Profile and Consumer Acceptability. Plant Foods Human Nutrition, 74(3), 342–349. https://doi.org/10.1007/s11130-019-00732-y
  19. Hughes, G., Ryan, D., Mukherjea, R. y Schasteen, C. (2011). Protein Digestibility-Corrected Amino Acid Scores (PDCAAS) for Soy Protein Isolates and Concentrate: Criteria for Evaluation. Journal of Agricultural and Food Chemistry, 59, 12707–12712. https://doi.org/10.1021/jf203220v
  20. Hussein, A., Hussein, M., Salama, M., Hamed, I., Fouda, K. y Mohamed, R. (2018). Formulation and Evaluation of Functional Cookies for Improving Health of Primary School Children. Pakistan Journal of Biological Sciences, 21, 401–408. https://doi.org/10.3923/pjbs.2018.401.408
  21. Intiquilla, A., Jiménez-Aliaga, K., Zavaleta, A., Arnao, I., Peña, C., Chávez-Hidalgo, E. y Hernández-Ledesma, B. (2016). Erythrina edulis (Pajuro) Seed Protein: A New Source of Antioxidant Peptides. Natural Product Communications, 11(0), 1–6. https://doi.org/10.1177/1934578X1601100620
  22. Jin, J., Ma, H., Zhou, C., Luo, M., Liu, W., Qu, W., He, R., Luo, L. y Yagoub, A. (2014). Effect of degree of hydrolysis on the bioavailability of corn gluten meal hydrolysates. Journal of the Science of Food and Agriculture, 95(12), 2501–2509. https://doi.org/10.1002/jsfa.6982
  23. López, C. y Bressani, R. (2008). Uso del cowpea (Vigna unguiculata) en mezclas con fríjol común (Phaseolus vulgaris) en el desarrollo de nuevos productos alimenticios. Archivos Latinoamericanos de Nutrición, 58(1), 71–80. https://bit.ly/3tUyK85
  24. Mariangeli, C. y House, J. (2019). Potential impact of the digestible indispensable amino acid score as a measure of protein quality on dietary regulations and health. Nutrition Reviews, 75(8), 658–667. https://doi.org/10.1093/nutrit/nux025
  25. Monsalve, C., Carías, D., Cioccia, A. y Hevia, P. (2007). Efecto de un incremento en la diuresis sobre la absorción y retención de algunos nutrientes en ratas. Acta Bioquímica Clínica Latinoamericana, 41(1), 67–76. https://bit.ly/3bwDISa
  26. Nosworthy, M., Franczyk, A., Zimoch-Korzycka, A., Appah, P., Utioh, A., Neufeld, J. y House, J. (2017). Impact of processing on the protein quality of pinto bean (Phaseolus vulgaris) y buckwheat (Fagopyrum esculentum Moench) flours and blends, as determined by in vitro and in vivo methodologies. Journal of Agricultural and Food Chemistry, 65(19), 3919–3925. https://doi.org/10.1021/acs.jafc.7b00697
  27. Nosworthy, M., Medina, G., Franczyk, A., Neufeld, J., Appah, P., Utioh, A., Frohlich, P. y House, J. (2018). Effect of processing on the in vitro and in vivo protein quality of beans (Phaseolus vulgaris and Vicia faba). Nutrients, 10(6), 671. https://doi.org/10.3390/nu10060671
  28. Nosworthy, M., Neufeld, J., Frohlich, P., Young, G., Malcolmson, L. y House, J. (2017). Determination of the protein quality of cooked Canadian pulses. Food Science and Nutrition, 5, 896–903. https://doi.org/10.1002/fsn3.473
  29. NRC, National Research Council. (1995). Nutrient Requirements of Laboratory Animals. 4th ed., Editorial National Academy Press. Washington. https://doi.org/10.17226/4758
  30. Pérez, G., Martínez, C. y Díaz, E. (1979). Evaluación de la Calidad de la proteína de la Erythrilla edulis (Balu). VOL. XXIX No. 2. Recuperado de https://bit.ly/3ycI3DI
  31. Pihlanto, A., Mattila, P., Mäkinen, S. y Pajari, A. (2017). Bioactivities of alternative protein sources and their potential health. Food y Function, 8, 3443–3458. https://doi.org/10.1039/C7FO00302A
  32. Sá, A., Franco, Y. y Mattar, B. (2019). Food processing for the improvement of plant proteins digestibility. Critical Reviews in Food Science and Nutrition, 60(20), 3367-3386. https://doi.org/10.1080/10408398.2019.1688249
  33. Sánchez, X., Corzo, L., Martínez, J., Cardador, A. y Jiménez C. (2019). Effect of thermal treatment on the extraction efficiency, physicochemical quality of Jatropha curcas oil, and biological quality of its proteins. Journal of Food Science and Technology, 56, 1567–1574. https://doi.org/10.1007/s13197-019-03666-0
  34. Santoro, L., Grant, G. y Pusztai, A. (1999). In vivo degradation and stimulating effect of phaseolin on nitrogen secretion in rats. Plant Foods for Human Nutrition, 53, 223–236. https://doi.org/10.1023/A:1008025922615
  35. Velásquez, L., Montoya, D., Jiménez, A., Murillo, W. y Méndez, J. (2019). Género Erythrina: actualidad en la investigación y perspectivas de desarrollo científico. Universidad del Tolima. Tolima, Colombia. Recuperado de https://bit.ly/3eWzPYZ
  36. Villafuerte, F., Pérez, E., Mahfoud, A., Valero, Y. y Pérez, A. (2019). Obtención de hidrolizados proteicos bajos en fenilalanina a partir de suero dulce de leche y chachafruto (Erythrina edulis Triana). Archivos Latinoamericanos de Nutrición, 69(1), 25–33. https://bit.ly/3yf5qMN