Vol. 24 Núm. 3 (2022)
Artículo original

Co-Digestión de Tres Tipos de Estiércol (Vaca, Cuy y Cerdo) para Obtener Biogás en el Sur del Perú

Jaime Ernesto Barreda Del Carpio
Universidad Católica de Santa María
Midwar R. Ancco Mamani
Universidad Católica de Santa María
Alexia D. Nuñez Chambi
Universidad Católica de Santa María
Christopher E. Aguirre Gamero
Universidad Católica de Santa María
Kevin Tejada Meza
Universidad Católica de Santa María
Gustavo M. Pacheco Pacheco
Universidad Católica de Santa María

Publicado 2022-08-25

Palabras clave

  • biogás, codigestión, estiércol, metales pesados.

Cómo citar

Barreda Del Carpio, J. E., Ancco Mamani, M. R., Nuñez Chambi, A. D., Aguirre Gamero, C. E., Tejada Meza, K., & Pacheco Pacheco, G. M. (2022). Co-Digestión de Tres Tipos de Estiércol (Vaca, Cuy y Cerdo) para Obtener Biogás en el Sur del Perú. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 24(3), 174-181. https://doi.org/10.18271/ria.2022.457

Resumen

La falta de energía en zonas rurales es un problema que afecta principalmente a los países en vías de desarrollo. Actualmente se buscan alternativas eficientes y sostenibles que solucionen este problema. La presente investigación evaluó la producción volumétrica y composición de biogás de 12 mezclas de tres tipos de sustratos (estiércol de vaca, cerdo y cuy). Los sustratos fueron caracterizados para conocer su porcentaje de humedad, cenizas, materia orgánica, nitrógeno Kjeldahl, relación C/N y metales totales. Luego se evaluó durante 23 días la producción volumétrica de biogás en cada sistema por triplicado y finalmente se analizó la composición del biogás. Los contenidos de materia orgánica, nitrógeno y relación C/N fueron muy similares a los reportados por varios autores; en los tres sustratos se observó la presencia de metales pesados como cobre y níquel. Solo en el estiércol de vaca de observó plomo. Por otro lado, se halló elementos traza que son beneficiosos para la digestión anaerobia, como el selenio en el estiércol de cuy. El sistema que generó mayor volumen de biogás fue el sistema S3, el cual contenía 25% de estiércol de vaca, 25% de estiércol de cerdo y 50 % de estiércol de cuy. Rindió 33.6 ± 0.42% de metano. La producción volumétrica y porcentaje de metano en el biogás se vio afectada directamente por la presencia de metales que inhiben o ralentizan el desarrollo de microorganismos metanogénicos.

Referencias

  1. Aksay, M. V., Ozkaymak, M., & Calhan, R. (2018). Co-digestion of cattle manure and tea waste for biogas production. International Journal of Renewable Energy Research, 8(3), 1347–1353.
  2. Alfa, M. I., Owamah, H. I., Onokwai, A. O., Gopikumar, S., Oyebisi, S. O., Kumar, S. S., Bajar, S., Samuel, O. D., & Ilabor, S. C. (2021). Evaluation of biogas yield and kinetics from the anaerobic co-digestion of cow dung and horse dung: a strategy for sustainable management of livestock manure. Energy, Ecology and Environment, 6(5), 425–434.
  3. Alvarez, R., & Lidén, G. (2009). Low temperature anaerobic digestion of mixtures of llama, cow and sheep manure for improved methane production. Biomass and Bioenergy, 33(3), 527–533. https://doi.org/10.1016/j.biombioe.2008.08.012
  4. Ameen, F., Ranjitha, J., Ahsan, N., & Shankar, V. (2021). Co-digestion of microbial biomass with animal manure in three-stage anaerobic digestion. Fuel, 306, 121746.
  5. ASTM. (1998). ASTM Standards D 3173-87—Standard test method for moisture in the analysis sample of coal and coke. Annual Book of ASTM Standards, Section, 5, 301–302.
  6. ASTM. (2003). E1755-01 Standard method for the determination of ash in biomass. Annual Book of ASTM Standard.
  7. Avnimelech, Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176(3), 227–235. https://doi.org/10.1016/S0044-8486(99)00085-X
  8. Bacon, J. R., & Dinev, N. S. (2005). Isotopic characterisation of lead in contaminated soils from the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria. Environmental Pollution, 134(2), 247–255. https://doi.org/10.1016/j.envpol.2004.07.030
  9. Bhatnagar, N., Ryan, D., Murphy, R., & Enright, A. M. (2020). Trace element supplementation and enzyme addition to enhance biogas production by anaerobic digestion of chicken litter. Energies, 13(13). https://doi.org/10.3390/en13133477
  10. Cai, Y., Zheng, Z., Zhao, Y., Zhang, Y., Guo, S., Cui, Z., & Wang, X. (2018). Effects of molybdenum, selenium and manganese supplementation on the performance of anaerobic digestion and the characteristics of bacterial community in acidogenic stage. Bioresource Technology, 266, 166–175. https://doi.org/10.1016/J.BIORTECH.2018.06.061
  11. Carrère, H., Sialve, B., & Bernet, N. (2009). Improving pig manure conversion into biogas by thermal and thermo-chemical pretreatments. Bioresource Technology, 100(15), 3690–3694. https://doi.org/10.1016/j.biortech.2009.01.015
  12. Castro-Molano, L. del P., Parrales-Ramírez, Y. A., & Escalante-Hernández, H. (2019). Co-digestión anaerobia de estiércoles bovino, porcino y equino como alternativa para mejorar el potencial energético en digestores domésticos. Revista Ion, 32(2), 29–39.
  13. Demirel, B., & Scherer, P. (2011). Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass and Bioenergy, 35(3), 992–998. https://doi.org/10.1016/j.biombioe.2010.12.022
  14. El-Mashad, H. M., & Zhang, R. (2010). Biogas production from co-digestion of dairy manure and food waste. Bioresource Technology, 101(11), 4021–4028. https://doi.org/10.1016/j.biortech.2010.01.027
  15. Feng, X. M., Karlsson, A., Svensson, B. H., & Bertilsson, S. (2010). Impact of trace element addition on biogas production from food industrial waste - Linking process to microbial communities. FEMS Microbiology Ecology, 74(1), 226–240. https://doi.org/10.1111/j.1574-6941.2010.00932.x
  16. Garfí, M., Ferrer-Martí, L., Perez, I., Flotats, X., & Ferrer, I. (2011). Codigestion of cow and guinea pig manure in low-cost tubular digesters at high altitude. Ecological Engineering, 37(12), 2066–2070. https://doi.org/10.1016/j.ecoleng.2011.08.018
  17. Guo, Q., Majeed, S., Xu, R., Zhang, K., Kakade, A., Khan, A., Hafeez, F. Y., Mao, C., Liu, P., & Li, X. (2019). Heavy metals interact with the microbial community and affect biogas production in anaerobic digestion: A review. Journal of Environmental Management, 240, 266–272. https://doi.org/10.1016/J.JENVMAN.2019.03.104
  18. Hao, H., Tian, Y., Zhang, H., & Chai, Y. (2017). Copper stressed anaerobic fermentation: biogas properties, process stability, biodegradation and enzyme responses. Biodegradation, 28(5–6), 369–381. https://doi.org/10.1007/S10532-017-9802-0/FIGURES/7
  19. Jackson-Moss, C. A., Duncan, J. R., & Cooper, D. R. (1989). The effect of calcium on anaerobic digestion. Biotechnology Letters 1989 11:3, 11(3), 219–224. https://doi.org/10.1007/BF01026064
  20. Jain, A., Sarsaiya, S., Awasthi, M. K., Singh, R., Rajput, R., Mishra, U. C., Chen, J., & Shi, J. (2022). Bioenergy and bio-products from bio-waste and its associated modern circular economy: Current research trends, challenges, and future outlooks. Fuel, 307, 121859.
  21. Jain, S. K., Gujral, G. S., Jha, N. K., & Vasudevan, P. (1992). Production of biogas from Azolla pinnata R. Br and Lemna minor L.: Effect of heavy metal contamination. Bioresource Technology, 41(3), 273–277.
  22. Jones, J. B., & Stadtman, T. C. (1977). Methanococcus vannielii: culture and effects of selenium and tungsten on growth. Journal of Bacteriology, 130(3), 1404–1406. https://doi.org/10.1128/jb.130.3.1404-1406.1977
  23. Kamran, M., Ali, H., Saeed, M. F., Bakhat, H. F., Hassan, Z., Tahir, M., Abbas, G., Naeem, M. A., Rashid, M. I., & Shah, G. M. (2020). Unraveling the toxic effects of iron oxide nanoparticles on nitrogen cycling through manure-soil-plant continuum. Ecotoxicology and Environmental Safety, 205, 111099.
  24. Khumalo, S. C., Oyekola, O. O., & Okudoh, V. I. (2021). Evaluating input parameter effects on the overall anaerobic co-digestion performance of abattoir and winery solid wastes. Bioresource Technology Reports, 13, 100635.
  25. Kirk, P. L. (1950). Kjeldahl method for total nitrogen. Analytical Chemistry, 22(2), 354–358.
  26. Li, Y., Achinas, S., Zhao, J., Geurkink, B., Krooneman, J., & Euverink, G. J. W. (2020). Co-digestion of cow and sheep manure: Performance evaluation and relative microbial activity. Renewable Energy, 153, 553–563.
  27. Meneses Quelal, W. O., Velázquez-Martí, B., Gaibor Chávez, J., Niño Ruiz, Z., & Ferrer Gisbert, A. (2021). Evaluation of methane production from the anaerobic co-digestion of manure of guinea pig with lignocellulosic Andean residues. Environmental Science and Pollution Research 2021 29:2, 29(2), 2227–2243. https://doi.org/10.1007/S11356-021-15610-X
  28. Mudhoo, A., & Kumar, S. (2013). Effects of heavy metals as stress factors on anaerobic digestion processes and biogas production from biomass. International Journal of Environmental Science and Technology, 10(6), 1383–1398. https://doi.org/10.1007/S13762-012-0167-Y/TABLES/1
  29. Muthusaravanan, S., Sivarajasekar, N., Vivek, J. S., Vasudha Priyadharshini, S., Paramasivan, T., Dhakal, N., & Naushad, Mu. (2020). Research Updates on Heavy Metal Phytoremediation: Enhancements, Efficient Post-harvesting Strategies and Economic Opportunities (Issue January). https://doi.org/10.1007/978-3-030-17724-9_9
  30. Parawira, W. (2012). Enzyme research and applications in biotechnological intensification of biogas production. Critical Reviews in Biotechnology, 32(2), 172–186.
  31. Rubiales, I. S. (2011). Notas sobre la hoja de ruta hacia una economía hipocarbónica competitiva en 2050 (Comunicación de la Comisión de 8 de marzo de 2011, COM (2011) 112 final). Revista Catalana de Dret Ambiental, 2(1).
  32. Scarlat, N., Dallemand, J.-F., & Fahl, F. (2018). Biogas: Developments and perspectives in Europe. Renewable Energy, 129, 457–472.
  33. Sebola, M. R., Tesfagiorgis, H. B., & Muzenda, E. (2015). Methane production from anaerobic co-digestion of cow dung, chicken manure, pig manure and sewage waste. Lecture Notes in Engineering and Computer Science, 2217, 592–598.
  34. Tahir, M. S., Shahzad, K., Shahid, Z., Sagir, M., Rehan, M., & Nizami, A. (2015). Producing methane enriched biogas using solvent absorption method. Chemical Engineering Transactions, 45, 1309–1314.
  35. Toribio, L. K. P., Castro, G. O., Flores, J. W. V., Olivera, C. A. C., & Benites-Alfaro, E. G. (2020). Calorific value of biogas obtained by cavia porcellus biomass. Chemical Engineering Transactions, 80(October), 271–276. https://doi.org/10.3303/CET2080046
  36. U.S. Environmental Protection Agency. (1994). Method 200.7 - Determination of elements and trace elements in water and wastes by Inductively Coupled Plasma-Atomic Emmission Spectropemtry. US Environmental Protection Agency, EPA/600/4-, 31–82.
  37. Varnero, M. (2011). Manual del Biogás (Proyecto de barreras para la electrificación rural con energías renovables, Ed.; 1st ed.). Gobierno de Chile.