Vol. 23 No. 4 (2021)
Short article

Antioxidants and total polyphenols of a black chocolate whit incorporation of unroasted cocoa (Theobroma cacao L.)

Clorinda Yordana Chacón Ortiz
Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas
Bio
Pati Llanina Mori Culqui
Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas
Bio
Segundo Grimaldo Chavez Quintana
Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas

Published 2021-11-16

Keywords

  • antioxidants,
  • total polyphenols,
  • DPPH,
  • Folin ciocalteu

How to Cite

Chacón Ortiz, C. Y., Mori Culqui, P. L., & Chavez Quintana, S. G. (2021). Antioxidants and total polyphenols of a black chocolate whit incorporation of unroasted cocoa (Theobroma cacao L.). Revista De Investigaciones Altoandinas - Journal of High Andean Research, 23(4). https://doi.org/10.18271/ria.2021.331

Abstract

Cocoa and its main derivative, chocolate, are an important source of antioxidant compounds for human nutrition. Polyphenols are the main antioxidants present in chocolate and are affected by the industrialisation processes of cocoa beans. In this regard, the effect of incorporating raw cocoa during the final stage of the refining process on the antioxidant capacity and phenolic content of dark chocolate was studied. For this purpose, dark chocolates (70%) were made with the incorporation of raw cocoa paste (10, 20 and 30% w/w) in the final refining stage. The antioxidant capacity of all the treatments was determined by the DPPH (2,2-Diphenyl-1-picrylhydrazyl) method and the total phenolic content by the Folin Ciocalteu spectrophotometric method. It was observed that the incorporation of raw cocoa significantly increases the content of antioxidants and total polyphenols in chocolate. As the dose of raw cocoa increases, the antioxidant activity of the chocolate increases linearly (R2=0.996); on the other hand, the polyphenol content increases exponentially (R2=0.968). Only the lowest dose (10%) doubles the phenolic content and the ratio decreases with higher doses of incorporation. The results suggest that the incorporation of raw cocoa in the formulations makes it possible to obtain chocolates with high phenolic content, improving the technological processes for using cocoa produced in the tropical Andes to develop bioactive chocolates, in line with new consumer demand.

References

  1. Arevalo-Gardini, E., Meinhardt, L. W., Zuñiga, L. C., Arévalo-Gardni, J., Motilal, L., & Zhang, D. (2019). Genetic identity and origin of “Piura Porcelana”—a fine-flavored traditional variety of cacao (Theoborma cacao) from the Peruvian Amazon. Tree Genetics and Genomes, 15(1). https://doi.org/10.1007/s11295-019-1316-y
  2. Aydın, N., Kian-Pour, N., & Toker, O. S. (2021). Caramelized white chocolate: effects of production process on quality parameters. Journal of Food Measurement and Characterization, 15(4), 3182–3194. https://doi.org/10.1007/s11694-021-00890-1
  3. Cárdenas-Mazon, N. V., Cevallos-Hermida, C. E., Salazar-Yacelga, J. C., Romero-Machado, E. R., Gallegos-Murillo, P. L., & Cáceres-Mena, M. E. (2018). Uso de pruebas afectivas, discriminatorias y descriptivas de evaluación sensorial en el campo gastronómico. Dominio de Las Ciencias, 4(3), 253–263. https://dialnet.unirioja.es/servlet/articulo?codigo=6560198
  4. Cempaka, L. (2021). Consumer Acceptance on Chocolate Drink Made from a Mixture of Commercial Cocoa Powder and Unfermented Cocoa Beans. Pelita Perkebunan, 37(2). https://doi.org/10.22302/iccri.jur.pelitaperkebunan.v37i2.479
  5. Dala-Paula, B. M., Deus, V. L., Tavano, O. L., & Gloria, M. B. A. (2021). In vitro bioaccessibility of amino acids and bioactive amines in 70% cocoa dark chocolate: What you eat and what you get. Food Chemistry, 343(August 2020), 128397. https://doi.org/10.1016/j.foodchem.2020.128397
  6. Di Mattia, C. D., Sacchetti, G., Mastrocola, D., & Serafini, M. (2017). From cocoa to chocolate: The impact of processing on in vitro antioxidant activity and the effects of chocolate on antioxidant markers in vivo. Frontiers in Immunology, 8(SEP), 1–7. https://doi.org/10.3389/fimmu.2017.01207
  7. Escobar-Mamani, F., Branca, D., & Haller, A. (2020). Investigación de montaña sobre y para la región andina. Revista de Investigaciones Altoandinas - Journal of High Andean Research, 22(4), 311–312. https://doi.org/10.18271/ria.2020.191
  8. Fang, Y., Li, R., Chu, Z., Zhu, K., Gu, F., & Zhang, Y. (2020). Chemical and flavor profile changes of cocoa beans (Theobroma cacao L.) during primary fermentation. Food Science and Nutrition, 8(8), 4121–4133. https://doi.org/10.1002/fsn3.1701
  9. Ferreira de Oliveira, A. P., Milani, R. F., Efraim, P., Morgano, M. A., & Tfouni, S. A. V. (2021). Cd and Pb in cocoa beans: Occurrence and effects of chocolate processing. Food Control, 119(June 2020), 107455. https://doi.org/10.1016/j.foodcont.2020.107455
  10. Glicerina, V., Balestra, F., Dalla, M., & Romani, S. (2016). Microstructural and rheological characteristics of dark, milk and white chocolate: A comparative study. Journal of Food Engineering, 169, 165–171. https://doi.org/10.1016/j.jfoodeng.2015.08.011
  11. Gustinelli, G., Eliasson, L., Svelander, C., Alminger, M., & Ahrné, L. (2018). Supercritical CO2 extraction of bilberry (Vaccinium myrtillus L.) seed oil: Fatty acid composition and antioxidant activity. Journal of Supercritical Fluids, 135(January), 91–97. https://doi.org/10.1016/j.supflu.2018.01.002
  12. Haller, A., & Branca, D. (2020). Montología: una perspectiva de montaña hacia la investigación transdisciplinaria y el desarrollo sustentable. Journal of High Andean Research, 22(4), 313–332. https://doi.org/10.18271/ria.2020.193
  13. Jonfia-Essien, W. A., West, G., Alderson, P. G., & Tucker, G. (2008). Phenolic content and antioxidant capacity of hybrid variety cocoa beans. Food Chemistry, 108(3), 1155–1159. https://doi.org/10.1016/j.foodchem.2007.12.001
  14. Katz, D. L., Doughty, K., & Ali, A. (2011). Cocoa and chocolate in human health and disease. Antioxidants and Redox Signaling, 15(10), 2779–2811. https://doi.org/10.1089/ars.2010.3697
  15. Kumari, N., Grimbs, A., D’Souza, R. N., Verma, S. K., Corno, M., Kuhnert, N., & Ullrich, M. S. (2018). Origin and varietal based proteomic and peptidomic fingerprinting of Theobroma cacao in non-fermented and fermented cocoa beans. Food Research International, 111(May), 137–147. https://doi.org/10.1016/j.foodres.2018.05.010
  16. Magrone, T., Russo, M. A., & Jirillo, E. (2017). Cocoa and dark chocolate polyphenols: From biology to clinical applications. Frontiers in Immunology, 8(JUN), 1–13. https://doi.org/10.3389/fimmu.2017.00677
  17. Martini, S., Conte, A., & Tagliazucchi, D. (2018). Comprehensive evaluation of phenolic profile in dark chocolate and dark chocolate enriched with Sakura green tea leaves or turmeric powder. Food Research International, 112(May), 1–16. https://doi.org/10.1016/j.foodres.2018.06.020
  18. Medina-Mendoza, M., Rodriguez-Pérez, R. J., Rojas-Ocampo, E., Torrejón-Valqui, L., Fernández-Jeri, A. B., Idrogo-Vásquez, G., Cayo-Colca, I. S., & Castro-Alayo, E. M. (2021). Rheological, bioactive properties and sensory preferences of dark chocolates with partial incorporation of Sacha Inchi (Plukenetia volubilis L.) oil. Heliyon, 7(2). https://doi.org/10.1016/j.heliyon.2021.e06154
  19. Mejía, A., Meza, G., Espichán, F., Mogrovejo, J., & Rojas, R. (2021). Chemical and sensory profiles of Peruvian native cocoas and chocolates from the Bagua and Quillabamba regions. Food Science and Technology, 2061, 1–7. https://doi.org/10.1590/fst.08020
  20. Montagna, M. T., Diella, G., Triggiano, F., Caponio, G. R., De Giglio, O., Caggiano, G., Di Ciaula, A., & Portincasa, P. (2019). Chocolate, “food of the gods”: History, science, and human health. International Journal of Environmental Research and Public Health, 16(24). https://doi.org/10.3390/ijerph16244960
  21. Motamayor, J. C., Lachenaud, P., da Silva e Mota, J. W., Loor, R., Kuhn, D. N., Brown, J. S., & Schnell, R. J. (2008). Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLoS ONE, 3(10). https://doi.org/10.1371/journal.pone.0003311
  22. Oliva-Cruz, M., Mori-Culqui, P. L., Caetano, A. C., Goñas, M., Vilca-Valqui, N. C., & Chavez, S. G. (2021). Total Fat Content and Fatty Acid Profile of Fine-Aroma Cocoa From Northeastern Peru. Frontiers in Nutrition, 8(July), 1–9. https://doi.org/10.3389/fnut.2021.677000
  23. Oliva, M., & Maicelo, J. L. (2020). Identificación y selección de ecotipos de cacao nativo fino de aroma de la zona Nor oriental del Perú. Revista de Investigación de Agroproducción Sustentable, 4(2), 31. https://doi.org/10.25127/aps.20202.556
  24. Oracz, J., & Nebesny, E. (2019). Effect of roasting parameters on the physicochemical characteristics of high-molecular-weight Maillard reaction products isolated from cocoa beans of different Theobroma cacao L. groups. European Food Research and Technology, 245(1), 111–128. https://doi.org/10.1007/s00217-018-3144-y
  25. Pallares-Pallares, A., Perea-Villamil, J. A., & López-Giraldo, L. J. (2016). Impacto de las condiciones de beneficio sobre los compuestos precursores de aroma en granos de cacao (Theobroma cacao L) del clon CCN-51. Respuestas, 21(1), 120–133. https://doi.org/10.22463/0122820x.726
  26. Pallares, A., Estupiñán, M. R., Perea, J. A., & López, L. J. (2016). Impacto de la fermentación y secado sobre el contenido de polifenoles y capacidad antioxidante del clon de cacao CCN-51 Impact of fermentation and drying in polyphenol content and antioxidant capacity of cocoa variety CCN-51. Revista ION, 29(2), 7–21. https://doi.org/10.18273/revion.v29n2-2016001
  27. Stanley, T. H., Van Buiten, C. B., Baker, S. A., Elias, R. J., Anantheswaran, R. C., & Lambert, J. D. (2018). Impact of Roasting on the Flavan-3-ol Composition, Sensory- Related Chemistry, and In Vitro Pancreatic Lipase Inhibitory Activity of Cocoa Beans Todd. Food Chemistry, 30, 414–420. https://doi.org/10.1016/j.foodchem.2018.02.036.Impact
  28. Suazo, Y., Davidov-Pardo, G., & Arozarena, I. (2014). Effect of Fermentation and Roasting on the Phenolic Concentration and Antioxidant Activity of Cocoa from Nicaragua. Journal of Food Quality, 37(1), 50–56. https://doi.org/10.1111/jfq.12070
  29. Todorovic, V., Redovnikovic, I. R., Todorovic, Z., Jankovic, G., Dodevska, M., & Sobajic, S. (2015). Polyphenols, methylxanthines, and antioxidant capacity of chocolates produced in Serbia. Journal of Food Composition and Analysis, 41, 137–143. https://doi.org/10.1016/j.jfca.2015.01.018
  30. Urbańska, B., & Kowalska, J. (2019). Comparison of the total polyphenol content and antioxidant activity of chocolate obtained from roasted and unroasted cocoa beans from different regions of the world. Antioxidants, 8(8). https://doi.org/10.3390/antiox8080283
  31. Vásquez-Ovando, A., Ovando-Medina, I., Adriano-Anaya, L., Bentacur-Ancona, D., & Salvador-Figueroa, M. (2016). Alcaloides y polifenoles del cacao, mecanismos que regulan su biosíntesis y sus implicaciones en el sabor y aroma. Archivos Latinoamericanos de Nutrición, 66(3), 239–253. https://cutt.ly/6RVNqCR
  32. Zarrillo, S., Gaikwad, N., Lanaud, C., Powis, T., Viot, C., Lesur, I., Fouet, O., Argout, X., Guichoux, E., Salin, F., Solorzano, R. L., Bouchez, O., Vignes, H., Severts, P., Hurtado, J., Yepez, A., Grivetti, L., Blake, M., & Valdez, F. (2018). The use and domestication of Theobroma cacao during the mid-Holocene in the upper Amazon. Nature Ecology and Evolution, 2(12), 1879–1888. https://doi.org/10.1038/s41559-018-0697-x
  33. Żyżelewicz, D., Krysiak, W., Oracz, J., Sosnowska, D., Budryn, G., & Nebesny, E. (2016). The influence of the roasting process conditions on the polyphenol content in cocoa beans, nibs and chocolates. Food Research International, 89, 918–929. https://doi.org/10.1016/j.foodres.2016.03.026