Bacterial and fungal influence on the mineralization of bovine manure: evidence on soil fertility in the cultivation of quinoa (Chenopodium quinoa Willd.)
Published 2022-02-21
Keywords
- manure ,
- bacterial ,
- fungal ,
- mineralization ,
- fertility
How to Cite
Abstract
Organic residues in soil are often degraded by the dynamic action of soil life. The objective of the present study was to determine the bacterial and fungal influence on the mineralization of bovine manure (BM) in soil. The research was carried out at the Centro Experimental Agropecuario de Condoriri, Oruro, Bolivia, at an altitude of 3,830 m asl. BM was applied to the pots at concentrations of 0.9, 1.9, 3.3, 4.2, 5.0, 5.6 and 6.7%, which were homogenized with river sand separately. 5 to 10 seeds of C. quinoa were manually sown in the pots. Soil samples were collected from the pots for microbiological analysis every 30 days, while macronutrients were collected at the end of plant physiological maturity. Bacteria were evaluated in Plate Count Agar (PCA) culture of 10-5 dilutions and fungi in Potato Dextrose Agar (PDA) of 10-2 solutions. The results indicate that alkaline pH does not reduce the population of bacteria and fungi. It was found that, at higher microbial population, nitrogen (N) has higher mineralization than other essential minerals. On the other hand, it was observed that the higher the degree of application of BM and the higher the soil moisture concentration, the more favorable the effects on the increase of bacterial and fungal populations. It is concluded that BM mineralization depends on high concentrations of bacterial and fungal populations as well as on soil moisture.
References
- Asghari, S., Neyshabouri, M.R., Abbasi, F., Aliasgharzad, N. y Oustan, S. (2009). The effects of four organic soil conditioners on aggregate stability, pore size distribution, and respiration activity in a sandy loam soil. Turkish Journal of Agriculture and Forestry, 33: 47-55. DOI:10.3906/tar-0804-20
- Bardgett, R.D., Lovell, R.D., Hobbs, P.J. y Jarvis, S.C. (1999). Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands. Soil Biology & Biochemistry, 31: 1021-1030. DOI:10.1016/S0038-0717(99)00016-4
- Beltrán Pineda, M.E., Rocha Gil, Z.E., Bernal Figueroa, A.A. y Pita Morales, L.A. (2017). Microorganismos funcionales en suelos con y sin revegetalización en el Municipio de Villa de Leyva, Boyacá. Colombia Forestal, 20(2): 158-170. http://dx.DOI.org/10.14483/udistrital.jour.colomb.for.2017.2.a05
- Brockett, B.F.T., Prescott, C.E. y Grayston, S.J. (2012). Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biology & Biochemistry, 44: 9-20. DOI:10.1016/j.soilbio.2011.09.003
- Cristóbal, D., Hernández, E., Maldonado, R. y Álvarez, M. (2015). Variabilidad espacial de carbono en un suelo después de 10 años de retiro e incorporación de residuos de cosecha. Terra Latinoamericana, 33(3): 199-208.
- Drenovsky, R.E., Steenwerth, K.L., Jackson, L.E. y Scow, K.M. (2010). Land use and climatic factors structure regional patterns in soil microbial communities. Global Ecology and Biogeography, 19: 27-39. DOI:10.1111/j.1466-8238.2009.00486.x
- FAO. (2009). Guía para la descripción de suelos (4ª ed.) Roma, Italia: (Trad. Vargas, R.) pp 66-67. http:// www.fao.org/3/a-a0541s.pdf
- Guadarrama Nonato, A., Mejía Carranza, J., Ramírez Gerardo, M.G. y Ramírez Gerardo, M.G. (2018). Mineralización de la materia orgánica en suelos con manejo diferencial en cultivo de rosa. Acta Universitaria, 28(2): 0188-6266. DOI: https://doi.org/10.15174/au.2017.1654
- Guzmán Estrada, A.E. (2011). Aislamiento y caracterización de bacterias solubilizadoras de fósforo a partir de cuatro suelos de la provincia de Chimborazo. Tesis Licenciatura. Riobamba. Escuela Ingeniería Agronómica. Riobamba, Ecuador. 45 p. http://dspace. Es poch.edu.ec/handle/123456789/1827
- Griffiths, R.I., Whiteley, A.S., O'Donnell, A.G. y Bailey, M.J. (2003). Physiological and community responses of established grassland bacterial populations to water stress. Applied and Environmental Microbiology, 69: 6961-6968. DOI:10.1128/AEM.69.12.6961-6968.2003
- Kätterer, T., Börjesson, G. y Kirchmann, H. (2014). Changes in organic carbon in topsoil and subsoil and microbial community composition caused by repeated additions of organic amendments and N fertilisation in a long-term field experiment in Sweden. Agriculture, Ecosystems and Environment, 189: 110-118. http://dx.doi.org/10.1016/j.agee.2014.03.025
- Nyamangara, J., Gotosa, J. y Mpofu, S.E. (2001). Cattle manure effects on structural stability and water retention capacity of a granitic sandy soil in Zimbabwe. Soil and Tillage Research, 62: 157-162. https://doi.org/10.1016/S0167-1987(01)00215-x
- Ordoñez, Y.M., Fernández, B.R., Lara, L.S., Rodríguez, A., Uribe, D.; y Sanders, I.R. (2016). Bacteria with phosphate solubilizing capacity alter mycorrhizal fungal growth both inside and outside the root and in the presence of native microbial communities. PLoS ONE, 11(6): e0154438. DOI: 10.1371/journal.pone.0154438
- Paul, E.A. (2007). Soil microbiology, ecology, and biochemistry (4ª ed.) Academic Press. Elsevier. Oxford. UK. 515 p.
- Paco Pérez, V. y Guzmán Vega, G.D. (2019). Efecto de enmiendas orgánicas sobre las poblaciones microbianas de la rizosfera del cultivo de quinua (Chenopodium quinoa Willd.) en el altiplano Sur de Bolivia. Journal of the Selva Andina Research Society, 7(1): 32-43.
- Ramos Vásquez, E. y Zuñiga Dávila, D. (2008). Efecto de la humedad, temperatura y pH del suelo en la actividad microbiana a nivel de laboratorio. Ecología aplicada, 7(1-2): 123-30.
- Sainz Rozas, H.R., Echeverría, H.E. y Angelini, H.P. (2011). Niveles de carbono orgánico y pH en suelos agrícolas de las regiones pampeana y extrapampeana argentina. Ciencia del Suelo, 29(1): 29-37.
- Senesi, N., Xing, B. y Huang, P.M. (2009). Biophysico-chemical processes involving natural nonliving organic matter in environmental systems. John Wiley & Sons. 837 p.
- Sissoko, A. y Kpomblekou, A.K. (2010). Carbon decomposition in broiler litter-amended soils. Soil Biology and Biochemistry, 42: 543-550. DOI:10.1016/j.soilbio.2009.10.007
- Strickland, M.S. y Rousk, J. (2010). Considering fungal: bacterial dominance in soils–methods, controls, and ecosystem implications. Soil Biology and Biochemistry, 42(9): 1385-1395. DOI:10.1016/j.soilbio.2010.05.007
- Tao, R., Liang, Y., Wakelin, S.A. y Chu, G. (2015=. Supplementing chemical fertilizer with an organic component increases soil biological function and quality. Applied Soil Ecology, 96: 42-51. http://dx.doi.org/10.1016/j.apsoil.2015.07.009
- Torsvik, V. y Øvreås, L. (2002). Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology, 5(3): 240-245.
- Thorn, R.G. y Lynch, M.D. (2007). Fungi and eukaryotic algae. En Paul E.A. (Ed.) Soil microbiology, ecology, and biochemistry (4ª ed.) Academic Press. Elsevier. Oxford. UK. pp 145-158.