Vol. 23 Núm. 1 (2021)
Artículo original

Aguas residuales de industria láctea como alternativa sostenible para aumentar la productividad del maíz en Perú

Miguel Angel Del Carpio Salas
Universidad Católica de Santa María/ Instituto de Investigación e Innovación en Energías Renovables y Medio Ambiente
Midwar Ancco
Universidad Católica de Santa María/ Instituto de Investigación e Innovación en Energías Renovables y Medio Ambiente
Antonio Erick Linares Flores Castro
Universidad Católica de Santa María/ Escuela Profesional de Ingeniería Industrial
Rodolfo Ancco-Loza
Universidad Nacional del Altiplano/ Facultad de Ciencias Contables y Administrativas Escuela Profesional de Ciencias Contables
Hugo Guillermo Jimenez Pacheco *
Universidad Católica de Santa María/ Instituto de Investigación e Innovación en Energías Renovables y Medio Ambiente

Publicado 2021-01-15

Palabras clave

  • Zea Mays,
  • fermentación anaeróbica

Cómo citar

Del Carpio Salas, M. A., Ancco, M., Linares Flores Castro , A. E. ., Ancco-Loza, R., & Jimenez Pacheco *, H. G. (2021). Aguas residuales de industria láctea como alternativa sostenible para aumentar la productividad del maíz en Perú. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 23(1), 26-36. https://doi.org/10.18271/ria.2021.229

Resumen

El maíz (Zea Mays) es el cereal más cultivado en el mundo y es un alimento básico para los seres humanos, por eso en los últimos años están buscando alternativas para mejorar su producción. Por otro lado, el suero es un efluente residual de la industria láctea generalmente eliminado en las aguas residuales, sin embargo, debido a su alta carga orgánica puede usarse para producir diferentes biofertilizantes. El objetivo de este estudio fue evaluar el efecto sobre la producción del cultivo de maíz al aplicar un biofertilizante obtenido por fermentación anaeróbica de lactosuero y estiércol bovino. El estudio se realizó entre los meses de octubre 2018-febrero 2019, en el área experimental de la asociación de Calaspam, ubicada en Majes, Arequipa-Perú. Se empleo un diseño experimental de bloque aleatorio completo en un esquema factorial 2×4 compuesto por tres tratamientos de biofertilizantes (6,9 y 12 LBF/Lagua) y un tratamiento de control con tres repeticiones aplicadas con un caudal promedio de 1,5 Lha-1. Se determinaron indicadores morfológicos, post cosecha y económicos, así como el contenido de clorofila. Los resultados indican que los tratamientos con biofertilizante mejoraron los indicadores estudiados. El tercer tratamiento muestra valores más altos en todos los indicadores en comparación a los demás tratamientos, siendo los valores de rendimiento (79,29±7,33 103 kgha-1) y tasa de retorno marginas (85,73%) los más resaltantes. Se concluye que el biofertilizante obtenido a partir de estiércol bovino y lactosuero tiene un efecto positivo en la producción de maíz y además su aplicación es viable económicamente.

Referencias

  1. Adebayo, A. G., Akintoye, H. A., Shokalu, A. O., & Olatunji, M. T. (2017). Soil chemical properties and growth response of Moringa oleifera to different sources and rates of organic and NPK fertilizers. International Journal of Recycling of Organic Waste in Agriculture, 6(4), 281–287. https://doi.org/10.1007/s40093-017-0175-5
  2. Adekiya, A. O., Ojeniyi, S. O., & Owonifari, O. E. (2016). Effect of cow dung on soil physical properties, growth and yield of maize (Zea mays) in a tropical Alfisol. Scientia Agriculturae, 15(2), 374–379.
  3. Asadu, C. O., Aneke, N. G., Egbuna, S. O., & Agulanna, A. C. (2018). Comparative studies on the impact of bio-fertilizer produced from agro-wastes using thermo-tolerant actinomycetes on the growth performance of Maize ( Zea-mays ) and Okro ( Abelmoschus esculentus ). Environmental Technology & Innovation, 12, 55–71. https://doi.org/10.1016/j.eti.2018.07.005
  4. Baiea, M. H. M., Gawad-Nehad, M. A. A., & Abedelkhalek, A. (2017). Influence of Natural Alternative NPK and Bio-fertilizations on Vegetative Growth and Nutritional Status of Young Wonderful Pomegranate Trees. Asian Journal of Soil Science and Plant Nutrition, 1–8.
  5. Barzallo-Bravo, L. A., Carrera-Villacrés, D., Vargas-Verdesoto, R. E., Ponce-Loaiza, L. K., Correoso, M., & Gavilanes-Quishpi, Á. P. (2019). Bio-digestion and post-treatment of effluents by bio-fermentation, an opportunity for energy uses and generation of organic fertilizers from bovine manure. International Journal of Recycling of Organic Waste in Agriculture, 8(4), 431–438. https://doi.org/10.1007/s40093-019-0275-5
  6. Brousett-Minaya, M., Torres Jiménez, A., Chambi Rodríguez, A., Mamani Villalba, B., & Gutiérrez Samata, H. (2015). Physicochemical, microbiological and toxicological quality of raw milk in cattle basins of the region Puno-Peru. Scientia Agropecuaria, 6, 165–176. https://doi.org/10.17268/sci.agropecu.2015.03.03
  7. Caballero, P., Rodríguez-Morgado, B., Macías, S., Tejada, M., & Parrado, J. (2020). Obtaining Plant and Soil Biostimulants by Waste Whey Fermentation. Waste and Biomass Valorization, 11(7), 3281–3292. https://doi.org/10.1007/s12649-019-00660-7
  8. Chemutai, R., Mwine, J., Awichi, R., & Bwogi, G. (2019). Effects of NPK and plant tea manure ( Tithonia diversifolia ) on growth rate of amaranth ( Amaranthus cruentus L .) in soilless growing media. African Journal of Agricultural Research, 14(27), 1169–1179. https://doi.org/10.5897/AJAR2019.13928
  9. Chiconato, D. A., Galbiatti, J. A., Junior, M., Franco, C. F., & Caramelo, A. D. (2014). Bovine biofertilizer and irrigation layers on lettuce development and leaf chlorophyll. Comunicata Scientiae, 5(2).
  10. Correa-Galeote, D., Bedmar, E. J., Fernández-González, A. J., Fernández-López, M., & Arone, G. J. (2016). Bacterial Communities in the Rhizosphere of Amilaceous Maize (Zea mays L.) as Assessed by Pyrosequencing . In Frontiers in Plant Science (Vol. 7, p. 1016). https://www.frontiersin.org/article/10.3389/fpls.2016.01016
  11. Da Silva, L., Rocha, A. E., Araujo, J. R. G., dos Reis, R. M., Muniz, F. H., & Mesquita, M. L. R. (2016). Vegetation structure of naturally occurring areas of mangaba Hancornia speciosa Gomes in the mid-north region of Brazil. African Journal of Agricultural Research, 11(32), 2937–2946.
  12. De Matos Nascimento, A., Maciel, A. M., Silva, J. B. G., Mendonça, H. V., de Paula, V. R., & Otenio, M. H. (2020). Biofertilizer application on corn (Zea mays) increases the productivity and quality of the crop without causing environmental damage. Water, Air, & Soil Pollution, 231(8), 414. https://doi.org/10.1007/s11270-020-04778-6
  13. Dineshkumar, R., Subramanian, J., Gopalsamy, J., Jayasingam, P., Arumugam, A., Kannadasan, S., & Sampathkumar, P. (2019). The Impact of Using Microalgae as Biofertilizer in Maize (Zea mays L.). Waste and Biomass Valorization, 10(5), 1101–1110. https://doi.org/10.1007/s12649-017-0123-7
  14. García Mendoza, P. J. (2017). El cultivo del maíz en el mundo y en Perú. Revista de Investigaciones de La Universidad Le Cordon Bleu, 4(2), 73–79. https://doi.org/10.36955/riulcb.2017v4n2.005
  15. González-Díaz, A., Ojeda-Morales, M. E., Hernández-Rivera, M. A., Córdova-Bautista, Y., Díaz-Flores, L. L., López-Lázaro, J. de los S., & Álvarez-Ramírez, J. G. (2019). Effect of biofertilizers application on the growth of Eucalyptus grandis seedlings under greenhouse conditions. Journal of Plant Nutrition, 42(19), 2560–2576. https://doi.org/10.1080/01904167.2019.1655040
  16. Hoseini, R. Z., Goltapeh, E. M., & Kalatejari, S. (2015). Effect of bio-fertilizer on growth , development and nutrient content ( leaf and soil ) of Stevia rebaudiana Bertoni. 4, 691–704.
  17. Islas-Valdez, S., Lucho-Constantino, C. A., Beltrán-Hernández, R. I., Gómez-Mercado, R., Vázquez-Rodríguez, G. A., Herrera, J. M., & Jiménez-González, A. (2017). Effectiveness of rabbit manure biofertilizer in barley crop yield. Environmental Science and Pollution Research, 24(33), 25731–25740. https://doi.org/10.1007/s11356-015-5665-2
  18. Jaliya, M. M., Falaki, A. M., Mahmud, M., & Sani, Y. A. (2008). Effect of sowing date and NPK fertilizer rate on yield and yield components of quality protein maize (Zea mays L.). ARPN Journal of Agricultural and Biological Science, 3(2), 23–29.
  19. Khaire, R. A., & Gogate, P. R. (2018). Intensi fi ed recovery of lactose from whey using thermal , ultrasonic and thermosonication pretreatments. Journal of Food Engineering, 237, 240–248. https://doi.org/10.1016/j.jfoodeng.2018.04.027
  20. Lima-Medina, I., Bravo, R. Y., & Aguilar-Gomez, M. I. (2018). Nematodos fitoparasitos asociados al cultivo de Maiz (Zea mais L.) en las regiónes de Puno y Cusco. Revista de Investigaciones Altoandinas - Journal of High Andean Research, 20(1), 31–38. https://doi.org/10.18271/ria.2018.328
  21. Lorin, H., Costa, M., Costa, L. a, Pereira, D., & Carneiro, L. (2016). Stabilization of confined beef cattle manure: characteristics of produced fertilizers. In Engenharia Agrícola (Vol. 36, pp. 877–885). scielo.
  22. Mahanty, T., Bhattacharjee, S., Goswami, M., Bhattacharyya, P., Das, B., Ghosh, A., & Tribedi, P. (2017). Biofertilizers: a potential approach for sustainable agriculture development. Environmental Science and Pollution Research, 24(4), 3315–3335. https://doi.org/10.1007/s11356-016-8104-0
  23. Mahmood, Y. A., Mohammed, I. Q., & Ahmed, F. W. (2020). Effect of organic fertilizer and foliar application with Garlic extract, Whey and bio fertilizer of bread yeast in availability of NPK in soil and plant, Growth and Yield of Tomato (Lycopersicon Esculentum Mill). Plant Archives, 20(1), 151–158.
  24. Milech, F. B., Cabreira, R. M., Luz, M. L. G. S., Luz, C. A. S., Gadotti, G. I., & Gomes, M. C. (2015). Electricity generation and biofertilizer on a dairy farm using anaerobic biodigesters. Científica, 43(2), 101. https://doi.org/10.15361/1984-5529.2015v43n2p101-108
  25. Mishra, D. K., Jain, R., Shukla, A. K., & Deshwal, A. (2018). Impact of Bio-Fertilizers on the Yield and Economics of Chrysanthemum Under Real Farming Situation. Current Agriculture Research Journal, 6(1), 105–108. https://doi.org/10.12944/carj.6.1.13
  26. Moe, K., Htwe, A. Z., Thu, T. T. P., Kajihara, Y., & Yamakawa, T. (2019). Effects on NPK status, growth, dry matter and yield of rice (Oryza sativa) by organic fertilizers applied in field condition. Agriculture, 9(5), 109.
  27. Monem, M. A. S. A., Khalifa, H. E., Beider, M., Ghandour, I. A. El, & Galal, Y. G. M. (2001). Using Biofertilizers for Maize Production: Response and Economic Return Under Different Irrigation Treatments. Journal of Sustainable Agriculture, 19(2), 41–48. https://doi.org/10.1300/J064v19n02_05
  28. Montero, S., Santos, D. F. L., & Lucas Junior, J. de. (2017). Economic and financial viability of digester use in cattle confinement for beef. Engenharia Agrícola, 37, 353–365.
  29. Montoro, S. B., Lucas, J., Santos, D. F. L., & Costa, M. S. S. M. (2019). Anaerobic co-digestion of sweet potato and dairy cattle manure: A technical and economic evaluation for energy and biofertilizer production. Journal of Cleaner Production, 226, 1082–1091. https://doi.org/10.1016/j.jclepro.2019.04.148
  30. Nunes da Silva, M., Pintado, M. E., Sarmento, B., Stamford, N. P., & Vasconcelos, M. W. (2019). A biofertilizer with diazotrophic bacteria and a filamentous fungus increases Pinus pinaster tolerance to the pinewood nematode (Bursaphelenchus xylophilus). Biological Control, 132, 72–80. https://doi.org/10.1016/j.biocontrol.2019.01.013
  31. Obid, S. A., Idris, A. E., & Mohamed Ahmed, B. E. A. (2016). Effect of Bio-Fertilizer on Growth and Yield of Two Maize (Zea mays L.) Cultivars at Shambat, Sudan. Scholars Journal of Agriculture and Veterinary Sciences, 3(4), 313–317. https://doi.org/10.21276/sjavs.2016.3.4.9
  32. Panchal, B. H., Patel, V. K., Patel, K. P., & Khimani, R. A. (2018). Effect of Biofertilizers, Organic Manures and Chemical Fertilizers on Microbial Population, Yield and Yield Attributes and Quality of Sweetcorn (Zea mays L., saccharata) cv. Madhuri. International Journal of Current Microbiology and Applied Sciences, 7(09), 2423–2431. https://doi.org/10.20546/ijcmas.2018.709.301
  33. Petrovic, B., Kopta, T., & Pokluda, R. (2019). Effect of biofertilizers on yield and morphological parameters of onion cultivars. Folia Horticulturae, 31(1), 51–59. https://doi.org/10.2478/fhort-2019-0002
  34. Quintero Rodriguez, E., Calero Hurtado, A., Perez Diaz, Y., & Enriquez Gomez, L. (2018). Effect of different biostimulants in the yields of common beans. Centro Agricola, 73–80.
  35. Singh, M., Dotaniya, M. L., Mishra, A., Dotaniya, C. K., Regar, K. L., & Lata, M. (2016). Role of biofertilizers in conservation agriculture. In Conservation Agriculture: An Approach to Combat Climate Change in Indian Himalaya (pp. 113–134). Springer Singapore. https://doi.org/10.1007/978-981-10-2558-7_4
  36. Singh, N., Singh, G., & Aggarwal, N. (2017). Economic analysis of application of phosphorus, single and dual inoculation of Rhizobium and plant growth promoting rhizobacteria in lentil (Lens culinaris Medikus). Journal of Applied and Natural Science, 9(2), 1008–1011. https://doi.org/10.31018/jans.v9i2.1312
  37. Tejada, M., Rodríguez-morgado, B., Gómez, I., Franco-andreu, L., Benítez, C., & Parrado, J. (2016). Use of biofertilizers obtained from sewage sludges on maize yield. European Journal of Agronomy, 78, 13–19. https://doi.org/10.1016/j.eja.2016.04.014
  38. Umesha, S., Singh, P. K., & Singh, R. P. (2017). Microbial biotechnology and sustainable agriculture. In Biotechnology for Sustainable Agriculture: Emerging Approaches and Strategies (pp. 185–205). Elsevier. https://doi.org/10.1016/B978-0-12-812160-3.00006-4
  39. Véras, M. L. M., de Melo Filho, J. S., de Sousa Alves, L., da Silva, T. I., de Melo Gonçalves, A. C., & Dias, T. J. (2017). Water salinity and bovine biofertilizer in the production of eggplant seedlings. Revista Brasileira de Agricultura Irrigada, 11(7), 1986.