Vol. 22 No. 1 (2020)
Case report

Calibration, validation and automation of subsurface drip irrigation system using Arduino microcontroller

David Ascencios
Universidad Nacional Agraria La Molina, Lima, Peru
Karem Meza
Universidad Nacional Agraria La Molina, Lima, Peru
Jeisson Lluen
Universidad Nacional Agraria La Molina, Lima, Peru
George Simon
Universidad Nacional Agraria La Molina, Lima, Peru

Published 2020-09-03

Keywords

  • sensors,
  • actuators,
  • Bluetooth,
  • user interfaces

How to Cite

Ascencios, D. ., Meza, K., Lluen, J., & Simon, G. (2020). Calibration, validation and automation of subsurface drip irrigation system using Arduino microcontroller. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 22(1), 95-105. https://doi.org/10.18271/ria.2020.540

Abstract

Current technological developments provide useful and easy-to-apply tools in automated management of irrigation systems. Automation has the main advantages of increasing the saving of resources such as investment, time and labor as well as improving the management of water resources. The research methodology was as follows: a) selection of the microcontroller, sensors, relay and communication module, b) calibration and validation of the sensors, c) integration of the programming codes, d) communication and development of the mobile application and e) irrigation system control and soil moisture monitoring. Analog and digital sensors were implemented to measure pressures, flow rates, soil moisture and water levels in the reservoir. The sensors were calibrated and validated, obtaining the R2 between 0.95-0.99 in the calibration indicating a high correlation between the physical and electrical variable; and obtaining R2 equal to 0.99 in the validation. The microcontroller received the information from the sensors and sent orders to the actuators through electrical signals, which activate a programming code, allowing the control of the irrigation system through relays, for switching the solenoid valves and solenoid pumps on and off. The management was done from a smartphone through an application connecting with the user via Bluetooth communication. The calibration and validation of the sensors allowed the development of integrated, reliable and safe automation for monitoring and control of the irrigation system, allows the increase in irrigation efficiency.

References

  1. Adeyemi, O., Norton, T., Grove, I., & Peets, S. (2016). Performance Evaluation of Three Newly Developed Soil Moisture Sensors. CIGR-AgEng Conference, 1–10. https://www.researchgate.net/publication/312383380_Performance_Evaluation_of_Three_Newly_Developed_Soil_Moisture_Sensors
  2. Al-Omary, A., AlSabbagh, H. M., & Al-Rizzo, H. (2018). Cloud based IoT for Smart Garden Watering System using Arduino Uno. Smart Cities Symposium 2018, (April), 249–254.
  3. Almaraz, F., Maz Machado, A., & López Esteban, C. (2015). Tecnología móvil y enseñanza de las matemáticas:: una experiencia de aplicación de App Inventor. Revista de Educación Matemática, 32(91), 77–86. https://dialnet.unirioja.es/servlet/articulo?codigo=5589286
  4. Arduino. (2019). Retrieved June 3, 2019, from https://www.arduino.cc/en/Main/Software
  5. Canales-Ide, F., Zubelzu, S., & Rodríguez-Sinobas, L. (2019). Irrigation systems in smart cities coping with water scarcity: The case of valdebebas, Madrid (Spain). Journal of Environmental Management, 247(December 2018), 187–195. https://doi.org/10.1016/j.jenvman.2019.06.062
  6. Datta, S., Taghvaeian, S., Ochsner, T. E., Moriasi, D., Gowda, P., & Steiner, J. L. (2018). Performance assessment of five different soil moisture sensors under irrigated field conditions in Oklahoma. Sensors, 18(11), 1–17. https://doi.org/10.3390/s18113786
  7. Goap, A., Sharma, D., Shukla, A. K., & Rama Krishna, C. (2018). An IoT based smart irrigation management system using Machine learning and open source technologies. Computers and Electronics in Agriculture, 155(May), 41–49. https://doi.org/10.1016/j.compag.2018.09.040
  8. González Teruel, J. D., Torres Sánchez, R., Blaya Ros, P. J., Toledo Moreo, A. B., Jiménez Buendía, M., & Soto Valles, F. (2019). Design and Calibration of a Low-Cost SDI-12 Soil Moisture Sensor. Sensors, 19(3), 1–16. https://doi.org/10.3390/s19030491
  9. Hong, G. Z., & Hsieh, C. L. (2016). Application of Integrated Control Strategy and Bluetooth for Irrigating Romaine Lettuce in Greenhouse. International Federation of Automatic Control, 49(16), 381–386. https://doi.org/10.1016/j.ifacol.2016.10.070
  10. Ingale, H., & Kasat, N. (2012). Automated Irrigation System. International Journal of Engineering Research and Development, 4(11), 51–54. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.375.4377&rep=rep1&type=pdf
  11. Jiang, M., Lv, M., Deng, Z., & Zhai, G. (2017). A wireless soil moisture sensor powered by solar energy. PLOS ONE, 12(9), 1–11. https://doi.org/10.1371/journal.pone.0184125
  12. Khandoba, R., & Jyoti, G. (2017). Smart Drip Irrigation System Using Raspberry Pi and Arduino. Journal of Innovative Research in Computer and Communication Engineering, 28–35. https://doi.org/10.1109/CCAA.2015.7148526
  13. Kim, Y., Avenue, N. C., Evans, R. G., Engineer, A., Avenue, N. C., & Pierce, F. J. (2006). Instrumentation and Control for Wireless Sensor Network for Automated Irrigation. 2006 ASABE Annual International Meeting. https://doi.org/10.13031/2013.20618
  14. Kumar, Abhishek, & Magesh, S. (2017). Automated Irrigation System Based on Soil Moisture Using Arduino. International Journal of Pure and Applied Mathematics, 116(21), 319–323. Retrieved from http://www.ijpam.eu
  15. Kumar, Ankit, Chanchal, A., Kumar, A., Kumar, D., & Mansoori, F. (2016). Arduino Uno Based Automatic Plant Watering System. International Journal of Scientific Research and Management Studies, 2(12), 487–492.
  16. Mayhua López, E., Ludeña Choez, J., Tamayo Bedregal, J., Cuba Reyes, M., Núñez Zambrano, Á., Gonzales Ale, N., & Lozada Herrera, D. (2015). Sistema de riego por goteo automático utilizando una red de sensores inalámbricos. Revista de Investigación Arequipa, 7, 69–92.
  17. Montoya, A. P., Obando, F. A., Morales, J. G., & Vargas, G. (2017). Automatic aeroponic irrigation system based on Arduino’s platform. 5th Colombian Conference of Engineering Physics, 850(1). https://doi.org/10.1088/1742-6596/850/1/012003
  18. Ojha, M., Mohite, S., Kathole, S., & Tarware, D. (2016). Microcontroller Based Automatic Plant Watering System. International Journal of Computer Science and Engineering, 8(3), 25–36. https://doi.org/10.5958/0976-5506.2017.00488.0
  19. Ortiz, D., Litvin, A. G., & Salas Fernandez, M. G. (2018). A cost-effective and customizable automated irrigation system for precise high-throughput phenotyping in drought stress studies. PLOS ONES, 13(6), 1–16. https://doi.org/10.1371/journal.pone.0198546
  20. Reddy, A. M., & Rao, K. R. (2016). An Android based Automatic Irrigation System using a WSN and GPRS Module. Journal of Science and Technology, 9, 1–6. https://doi.org/10.17485/ijst/2016/v9i29/98719
  21. Rivas Sánchez, Y. A., Moreno Pérez, M. F., & Roldán Cañas, J. (2019). Environment control with low-cost microcontrollers and microprocessors: Application for green walls. Sustainability, 11(3), 1–17. https://doi.org/10.3390/su11030782
  22. Shadadpuri Goplani, S. (2018). Analisis, caracterizacion y calibracion de sensores de bajo coste para Arduino (Universidad de La Laguna). https://riull.ull.es/xmlui/bitstream/handle/915/10280/Analisis%2C caracterizacion y calibracion de sensores de bajo coste para Arduino.pdf?sequence=1&isAllowed=y
  23. Shakoor, A., Khan Mehmood, Z., Ahmad, M., & Wajid, A. (2016). Design and Calibration of Semi-Automated Irrigation System Based on Soil Moisture Sensor. 1st National Conference on Agricultural Engineering and Sciences. https://www.researchgate.net/publication/306323891%0ADESIGN
  24. Sood, R., Kaur, M., & Lenka, H. (2013). Design and Development of Automatic Water Flow Meter. International Journal of Computer Science, Engineering and Applications (IJCSEA), 3(3), 49–59. https://doi.org/10.5121/ijcsea.2013.3306
  25. Sui, R. (2016). Use of Soil Moisture Sensors for Irrigation Scheduling. Irrigation Show & Education Conference, Dec 5-9, 2016, Las Vegas Convention Center, Las Vegas, Nevada, USA, 1–6.
  26. Suresh, N., Balaji, E., Anto, K., & Jenith, J. (2014). Raspberry pi based liquid flow monitoring and control. International Journal of Research in Engineering and Technology, 3(07), 122–125. Retrieved from http://www.ijret.org
  27. Tt, A., Saji, J., Dubey, R., & Saravanakumar, K. (2017). Food Computer Automated Gardening System. International Journal of Trend in Research and Development, 38–39.