Eficiencia del biocarbón activado de Daucus carota con perlas de alginato de calcio en la remoción de arsénico, muestras sintéticas
Publicado 30-09-2025
Palabras clave
- Arsénico,
- Biocarbón activado,
- Daucus carota,
- pH,
- Remoción
Derechos de autor 2025 Carlos Romel Pari Salazar

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Cómo citar
Resumen
El estudio evalúa la eficiencia del biocarbón activado de Daucus carota con perlas de alginato de calcio para remover arsénico en muestras sintéticas, promoviendo tecnologías sostenibles para descontaminar aguas. Se analizaron las interacciones entre la concentración del adsorbente, el pH y el tiempo de contacto para optimizar la adsorción. La investigación, de enfoque cuantitativo y aplicada, utilizó tres concentraciones de biocarbón (1 mg/L, 2 mg/L y 3 mg/L), tres niveles de pH (4, 7 y 9) y tres tiempos de contacto (30, 60 y 120 minutos). Los resultados mostraron que la mayor eficiencia (93.263%) se logró con 3 mg/L de adsorbente a pH neutro (7) tras 120 minutos. En contraste, la menor eficiencia (51.31%) ocurrió a pH 9 con 1 mg/L de adsorbente en el mismo tiempo. Además, el tiempo de contacto influyó significativamente en la adsorción, mejorando progresivamente hasta los 120 minutos. Estos hallazgos destacan que el biocarbón activado de Daucus carota es un adsorbente efectivo para remover arsénico, especialmente en condiciones de pH neutro y tiempos prolongados. Su uso representa una alternativa viable y sostenible para tratar aguas contaminadas, contribuyendo a estrategias eficientes de gestión ambiental y reducción de metales pesados en ecosistemas acuáticos, alineándose con los objetivos de desarrollo sostenible.
Referencias
- Ali, H., Ahmed, S., Hsini, A., Kizito, S., Naciri, Y., Djellabi, R., Abid, M., Raza, W., Hassan, N., Saif Ur Rehman, M., Jamal Khan, A., Khan, M., Zia Ul Haq, M., Aboagye, D., Kashif Irshad, M., Hassan, M., Hayat, A., Wu, B., Qadeer, A., & Ajmal, Z. (2022). Efficiency of a novel nitrogen-doped Fe3O4 impregnated biochar (N/Fe3O4@BC) for arsenic (III and V) removal from aqueous solution: Insight into mechanistic understanding and reusability potential. Arabian Journal of Chemistry, 15(11), 104209. https://doi.org/10.1016/J.ARABJC.2022.104209
- Alka, S., Shahir, S., Ibrahim, N., Ndejiko, M. J., Vo, D. V. N., & Manan, F. A. (2021). Arsenic removal technologies and future trends: A mini review. Journal of Cleaner Production, 278, 123805. https://doi.org/10.1016/J.JCLEPRO.2020.123805
- ALSamman, M. T., & Sánchez, J. (2023). Adsorption of Copper and Arsenic from Water Using a Semi-Interpenetrating Polymer Network Based on Alginate and Chitosan. Polymers 2023, Vol. 15, Page 2192, 15(9), 2192. https://doi.org/10.3390/POLYM15092192
- Ayuso-Álvarez, A., Nuñez, O., Martín-Méndez, I., Bel-Lán, A., Tellez-Plaza, M., Pérez-Gómez, B., Galán, I., & Fernández-Navarro, P. (2022). Metal and metalloid levels in topsoil and municipal cardiovascular mortality in Spain. Environmental Research, 204, 112395. https://doi.org/10.1016/J.ENVRES.2021.112395
- Azzam, M. A., Rizwan Khan, M., & Moustafa Youssef, H. (2023). Drinking water as a substantial source of toxic alkali, alkaline and heavy metals: Toxicity and their implications on human health. Journal of King Saud University–Science, 35(6), 102761. https://doi.org/10.1016/J.JKSUS.2023.102761
- Bhatti, Z. A., Qureshi, K., Maitlo, G., & Ahmed, S. (2020). Study of PAN Fiber and Iron ore Adsorbents for Arsenic Removal. Civil Engineering Journal, 6(3), 548-562. https://doi.org/10.28991/CEJ-2020-03091491
- Chen, Q. Y., & Costa, M. (2021). Arsenic: A Global Environmental Challenge. Annual Review of Pharmacology and Toxicology, 61(Volume 61, 2021), 47-63. https://doi.org/10.1146/ANNUREV-PHARMTOX-030220-013418/CITE/REFWORKS
- Das, S., & Mondal, S. (2023). Synthesis of magnetic biochar derived from waste wood of acacia Auriculiformis for the removal of arsenic. Environmental Nanotechnology, Monitoring & Management, 20, 100893. https://doi.org/10.1016/J.ENMM.2023.100893
- Dias, A. C., & Fontes, M. P. F. (2020). Arsenic (V) removal from water using hydrotalcites as adsorbents: A critical review. Applied Clay Science, 191, 105615. https://doi.org/10.1016/J.CLAY.2020.105615
- Gayathiri, M., Pulingam, T., Lee, K. T., & Sudesh, K. (2022). Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism. Chemosphere, 294, 133764. https://doi.org/10.1016/J.CHEMOSPHERE.2022.133764
- Hao, C., Chen, B., Sánchez de la Campa, A. M., & de la Rosa, J. D. (2020). Increased industry contribution and atmospheric heavy metals from economic recovery in Spain. Journal of Cleaner Production, 246, 119024. https://doi.org/10.1016/J.JCLEPRO.2019.119024
- Hernández, R., Fernández, C., & Baptista, M. D. P. (2014). Metodología de la investigación. Metodología de la investigación, 91. https://dialnet.unirioja.es/servlet/libro?codigo=775008
- Ho, P. N. T., Nguyen, T. B., Dong, C. Di, Ho, H. T. T., Phan, C. T., & Lai, T. H. D. (2024). Arsenic adsorption by activated biochar derived from water hyacinth. Case Studies in Chemical and Environmental Engineering, 10, 100907. https://doi.org/10.1016/J.CSCEE.2024.100907
- Kachhwaha, V., Kumari, P., Giri, N., & Mishra, P. (2023). Evaluation of Lead Removal by Activated Citrus Sinensis Biochar Impregnated with Calcium Alginate Beads. Oriental Journal Of Chemistry, 39(6), 1547-1555. https://doi.org/10.13005/OJC/390615
- Khan, N., Hoque, S. F., Mahmud, Z. H., Islam, M. R., Alam, M. A. U., Islam, Md. S., & Charles, K. J. (2024). Water quality and unseen health outcomes: A cross-sectional study on arsenic contamination, subclinical disease and psychosocial distress in Bangladesh. SSM–Mental Health, 6, 100344. https://doi.org/10.1016/J.SSMMH.2024.100344
- Lakshmana Naik, R., Rupas Kumar, M., & Bala Narsaiah, T. (2023). Removal of heavy metals (Cu & Ni) from wastewater using rice husk and orange peel as adsorbents. Materials Today: Proceedings, 72, 92-98. https://doi.org/10.1016/J.MATPR.2022.06.112
- Mobarak, M., Salah, A. M., Selim, A. Q., Al-arifi, N., Salama, Y. F., Li, Z., & Seliem, M. K. (2024). Magnetic hybrid spheres of glauconite/calcium alginate interface for methylene blue adsorption: Synthesis, characterization, and novel physicochemical insights through theoretical treatment. International Journal of Biological Macromolecules, 277, 134106. https://doi.org/10.1016/J.IJBIOMAC.2024.134106
- Mohan, D., Markandeya, Dey, S., Dwivedi, S. B., & Shukla, S. P. (2019). Adsorption of arsenic using low cost adsorbents: Guava leaf biomass, mango bark and bagasse. Current Science, 117(4), 649-661. https://doi.org/10.18520/cs/v117/i4/649-661
- Papadaki, M. I., Mendoza-Castillo, D. I., Reynel-Avila, H. E., Bonilla-Petriciolet, A., & Georgopoulos, S. (2021). Nut Shells as Adsorbents of Pollutants: Research and Perspectives. Frontiers in Chemical Engineering, 3, 640983. https://doi.org/10.3389/FCENG.2021.640983/BIBTEX
- Pérez-Cid, B., Calvar, S., Moldes, A. B., & Cruz, J. M. (2020). Effective Removal of Cyanide and Heavy Metals from an Industrial Electroplating Stream Using Calcium Alginate Hydrogels. Molecules 2020, Vol. 25, Page 5183, 25(21), 5183. https://doi.org/10.3390/MOLECULES25215183
- Qasem, N. A. A., Mohammed, R. H., & Lawal, D. U. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. npj Clean Water 2021 4:1, 4(1), 1-15. https://doi.org/10.1038/s41545-021-00127-0
- Rahdar, S., Taghavi, M., Khaksefidi, R., & Ahmadi, S. (2019). Adsorption of arsenic (V) from aqueous solution using modified saxaul ash: isotherm and thermodynamic study. Applied Water Science, 9(4), 1-9. https://doi.org/10.1007/S13201-019-0974-0/TABLES/4
- Raji, Z., Karim, A., Karam, A., & Khalloufi, S. (2023). Adsorption of Heavy Metals: Mechanisms, Kinetics, and Applications of Various Adsorbents in Wastewater Remediation—A Review. Waste, 1(3), 775-805. https://doi.org/10.3390/WASTE1030046
- Sakhiya, A. K., Kaushal, P., & Vijay, V. K. (2023). Potential of rice straw derived activated biochar to remove arsenic and manganese from groundwater: A cleaner approach in the Indo-Gangetic Plain. Applied Surface Science Advances, 17, 100443. https://doi.org/10.1016/J.APSADV.2023.100443
- Sevak, P., & Pushkar, B. (2024). Arsenic pollution cycle, toxicity and sustainable remediation technologies: A comprehensive review and bibliometric analysis. Journal of Environmental Management, 349, 119504. https://doi.org/10.1016/J.JENVMAN.2023.119504
- Shah, A., Arjunan, A., Thumma, A., Zakharova, J., Bolarinwa, T., Devi, S., & Batool, M. (2024). Adsorptive removal of arsenic from drinking water using KOH-modified sewage sludge-derived biochar. Cleaner Water, 2, 100022. https://doi.org/10.1016/J.CLWAT.2024.100022
- Shangguan, Y., Li, B., Zhuang, X., Querol, X., Moreno, N., Huang, P., Guo, Y., Shi, Y., Wu, T., & Sola, P. C. (2025). Arsenic distribution and speciation in deposited coal mine dust. Journal of hazardous materials, 482. https://doi.org/10.1016/J.JHAZMAT.2024.136537
- Yaqub, A., Syed, S. M., Ajab, H., & Zia Ul Haq, M. (2023). Activated carbon derived from Dodonaea Viscosa into beads of calcium-alginate for the sorption of methylene blue (MB): Kinetics, equilibrium and thermodynamics. Journal of Environmental Management, 327, 116925. https://doi.org/10.1016/J.JENVMAN.2022.116925
- Yoon, K., Cho, D. W., Kwon, G., Rinklebe, J., Wang, H., & Song, H. (2023). Practical approach of As(V) adsorption by fabricating biochar with low basicity from FeCl3 and lignin. Chemosphere, 329, 138665. https://doi.org/10.1016/J.CHEMOSPHERE.2023.138665
- Zhang, K., Chang, S., Zhang, Q., Bai, Y., Wang, E., Zhang, M., Fu, Q., Wei, L., & Yu, Y. (2023). Heavy metals in influent and effluent from 146 drinking water treatment plants across China: Occurrence, explanatory factors, probabilistic health risk, and removal efficiency. Journal of Hazardous Materials, 450, 131003. https://doi.org/10.1016/j.jhazmat.2023.131003