Vol. 20 Núm. 1 (2018)
Artículo original

Cuantificación de metales en sedimentos superficiales de la bahía interior, lago Titicaca (Perú)

Edmundo Moreno Terrazas
Universidad Nacional del Altiplano de Puno Perú, Facultad de Ciencias Biológicas
George Argota Pérez
Universidad Nacional del Altiplano de Puno Perú, Facultad de Ciencias Biológicas
René Alfaro Tapia
Universidad Nacional del Altiplano de Puno Perú, Facultad de Ciencias Biológicas
Martha Aparicio Saavedra
Universidad Nacional del Altiplano de Puno Perú, Facultad de Ciencias Biológicas
Sabino Atencio Limachi
Universidad Nacional del Altiplano de Puno Perú, Facultad de Ciencias Biológicas
Gilmar Goyzueta Camacho
Universidad Nacional del Altiplano de Puno Perú, Facultad de Ciencias Biológicas

Publicado 2018-01-08

Palabras clave

  • matriz abiótica sedimentaria,
  • metales,
  • toxicidad,
  • ecosistema acuático,
  • lago

Cómo citar

Moreno Terrazas, E. ., Argota Pérez, G. ., Alfaro Tapia, R. ., Aparicio Saavedra, M. ., Atencio Limachi, S. ., & Goyzueta Camacho, G. . (2018). Cuantificación de metales en sedimentos superficiales de la bahía interior, lago Titicaca (Perú). Revista De Investigaciones Altoandinas - Journal of High Andean Research, 20(1), 9-18. https://doi.org/10.18271/ria.2018.326

Resumen

En ecosistemas acuáticos, los sedimentos son reservorios de metales pesados cuando sus aguas se encuentran expuestas. El propósito del estudio fue cuantificar metales en sedimentos superficiales de la bahía interior de Puno, lago Titicaca – Perú. De enero a noviembre del 2016 fueron analizadas las concentraciones de Cu, Zn, Pb, Cd, As y Hg en los sedimentos superficiales de seis estaciones de muestreo ambiental seleccionadas mediante un muestreo no probabilístico por conveniencia. Los metales se analizaron por digestión ácida donde su cuantificación fue mediante espectrometría de plasma inductivamente acoplado con vista axial (ICP-AES). Al comparar los resultados con la norma ambiental seleccionada (Interim Sediment Quality Guidelin, Canadá), todos los elementos presentaron concentraciones en los rangos recomendados, aunque existió entre las estaciones, diferencias estadísticamente significativas (p<0,05). El As y Hg, presentaron similitudes en sus valores (0,0001 mg.L-1) entre las estaciones. Se concluyó que, los sedimentos superficiales de la bahía interior de Puno, no representan riesgo por exposición a metales totales, ya que sus concentraciones se encontraron en el rango de los valores permisibles.

Referencias

  1. Archundia, D., Duwig, C., Spadini, L., Uzu, G., Guédron, S. et al. (2017). How Uncontrolled Urban Expansion Increases the Contamination of the Titicaca Lake Basin (El Alto, La Paz, Bolivia). Water, Air, & Soil Pollution, 228(1), 44. Disponible en: https://doi.org/10.1007/s11270-016-3217-0
  2. Beltrán, F.F.D., Palomino, C.P.R., Moreno, T.E.G., Peralta, G.C. Montesinos, T.D.B. (2015). Calidad de agua de la bahía interior de Puno, lago Titicaca durante el verano del 2011. Revista Peruana de Biología; 22(3), 335-340. Disponible en: http://www.redalyc.org/pdf/1950/195043168009.pdf
  3. Calmano, W., Hong, J. & Forstner, U. (1993). Binding and mobilization of heavy-metals in contaminated sediments affected by pH and redox potential. Water Sci Technol; 28(8-9), 223–235. Disponible en: file:///C:/Users/CLIENTE/Downloads/Binding_and_Mobilization_of_Heavy_Metals_in_Contam.pdf
  4. Canales, G.A. (2010). Evaluación de la biomsa y manejo de Lemna gibba (lenteja de agua) en la bahía interior del Lago Titicaca, Puno. Ecología Aplicada, 9(2), 91-99. Disponible en: http://www.scielo.org.pe/pdf/ecol/v9n2/a04v9n2
  5. Carvalho, P.C.S., Neiva, A.M.R. & Silva, M.M.V.G. (2012). Assessment to the potential mobility and toxicity of metals and metalloids in soils contaminated by old Sb–Au and As–Au mines (NW Portugal). Environ Earth Sci; 65(4), 1215–1230.
  6. Chelarescu, E.D., Radulescu, C., Stihi, C., Bretcan, Tanislav, D. et al. (2017). Analysis of elements in lake sediment samples by PIXE spectrometry. Nuclear Instruments and Methods in Physics Research; 1-3. Disponible en: https://doi:10.1016/j.nimb.2017.02.005
  7. Davison, W., Zhang, H. (2012). Progress in understanding the use of diffusive gradients in thin films (DGT) – back to basics. Environ Chem; 9(1), 1–13. Disponible en: https://doi.org/10.1071/EN11084
  8. El-Amier, A.Y., Elnaggar, A.A. & El-Alfy, A.M. (2016). Evaluation and mapping spatial distribution of bottom sediment heavy metal contamination in Burullus Lake. Egypt. Egyptian Journal of Basic and Applied Sciences; 1-13. Disponible en. https://doi.org/10.1016/j.ejbas.2016.09.005
  9. Ghosh, U., Luthy, R.G., Cornelissen, G., Werner, D. & Menzie, C. (2011). In-situ sorbent amendments: a new direction in contaminated sediment management. Environ Sci Technol; 45(4), 1163-1168. Disponible en. http://doi.0.1021/es102694h
  10. Hou, D., He, J., Lü, C., Ren, L., Fan, Q., Wang, J. & Xie, Z. (2013). Distribution characteristics and potential ecological risk assessment of heavy metals (Cu, Pb, Zn, Cd) in water and sediments from Lake Dalinouer, China. Ecotoxicol Environ Saf; 93, 135–144. Disponible en: http://dx.doi.org/10.1016/j.ecoenv.2013.03.012
  11. Jimenez, M.L.A., Jahuira, H.F.A. & Ibañez, Q.V. (2016). Tratamiento de aguas eutrofizadas de la bahía interior de Puno, Perú, con el uso de dos Macrófita. Rev Investig Altoandin; 18(4), 403–410. Disponible en: http://www.scielo.org.pe/pdf/ria/v18n4/a03v18n4.pdf
  12. Li, Y. & Cai, Y. (2015). Mobility of toxic metals in sediments: assessing methods and controlling factors. Journal of Environmental Sciences; 31, 203–205. Disponible en. http://www.jesc.ac.cn/jesc_en/ch/reader/create_pdf.aspx?file_no=2015310523
  13. Merrington, G., Peters, A., Whitehouse, P., Clarke, R. & Merckel, D. (2017). Delivering environmental benefit from the use of environmental quality standards: why we need to focus on implementation. Environ Sci Pollut Res. Disponible en: http://dx.doi.org/10.1007/s11356-017-9032-3
  14. Moreno, T.E., Argota, P.G., Alfaro, T.R., Aparicio, S.M., Atencio, L.S. & Goyzueta, C.G. (2017). Determinación interactiva por metales totales disponibles en las aguas de la bahía interior del Lago Titicaca-Perú. Revista de Investigación Altoandinas, 19(2), 125-134. Disponible en: http://huajsapata.unap.edu.pe/ria/index.php/ria/article/view/271/244
  15. Mostafa, R. & Elhaddad, E. (2017). Heavy metals seasonal variability and distribution in Lake Qaroun, El-Fayoum, Egypt. Journal of African Earth Sciences; 1-22. Disponible en: https://dx.doi.org/10.1016/j.jafrearsci.2017.06.005
  16. Niyogi, S. & Wood, C.M. (2004). Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Environ Sci Technol; 38(23), 6177–6192. Disponible en: http://dx.doi.org/10.1021/es0496524
  17. Reddy, M.V., Babu, K.S., Balaram, V. & Satyanarayanan, M. (2012). Assessment of the effects of municipal sewage, immersed idols and boating on the heavy metal and other elemental pollution of surface water of the eutrophic Hussainsagar Lake (Hyderabad, India). Environ Monit Assess; 184(4), 1991–2000. Disponible en. http://10.1007/s10661-011-2094-7
  18. Redwan, M. & Elhaddad, E. (2017).Heavy metals seasonal variability and distribution in Lake Qaroun, El-Fayoum, Egypt. Journal of African Earth Sciences; 1-22. Disponible en: https://doi.org/10.1016/j.jafrearsci.2017.06.005
  19. Skalak, K., Benthem, A., Hupp, C., Schenk, E., Galloway, J. & Nustad, R. (2016). Hydrogeomorphology-ecology interactions in river systems. River Res Appl; 22, 1085–1095.
  20. Tessier, A., Campbell, P.G.C. & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace-metals. Anal Chem; 51(7), 844–851. Disponible en: http://dx.doi.org/10.1021/ac50043a017
  21. Väänänen, K., Kauppila, T., Mäkinen, J., Leppänen, M.T., Lyytikäinen, M. & Akkanen, J. (2016). Ecological risk assessment of boreal sediments affected by metal mining: metal geochemistry, seasonality, and comparison of several risk assessment methods. Integr. Environ Assess Manag; 12(4), 759–771. Disponible en: http://dx.doi.org/10.1002/ieam.1751
  22. Vasquez, T.Y.F. (2016). Efectos de la eutrofización en el hábitat de la bahía de Puno, en la diversidad y abundancia de avifauna del lago Titicaca. Disponible en: URI: http://repositorio.unap.edu.pe/handle/UNAP/3563
  23. Wang, H., Dong, Y.H., Yang, Y.Y., Toor, G.S. & Zhang, X.M. (2013). Changes in heavy metal contents in animal feeds and manures in an intensive animal production region of China. J Environ Sci; 25(12), 2435–2442. Disponible en: http://10.1016/j.wasman.2017.03.015
  24. Yanbin, L & Yong, C. (2015). Mobility of toxic metals in sediments: Assessing methods and controlling factors. Journal of Environmental Sciences; 31, 203-205. Disponible en: http://10.1016/j.jes.2015.04.001
  25. Zhang, K., Chai, F.H., Zheng, Z.L., Yang, Q., Li, J.S. & Wang, J., et al. (2014). Characteristics of atmospheric particles and heavy metals in winter in Chang-Zhu-Tan city clusters, China. Journal of Environmental Sciences; 26(1), 147–153.
  26. Zhang, Y., Han, Y., Yang, J., Zhu, L., Wenjue, Z. (2017). Toxicities and risk assessment of heavy metals in sediments of Taihu Lake, China, based on sediment quality guidelines. Journal of Environmental Sciences; 1-8. Disponible en: https://doi.org/10.1016/j.jes.2017.08.002