Vol. 22 Núm. 2 (2020)
Artículo breve

Determinación de antocianinas y capacidad antioxidante en extractos de (Muehlembeckia volcanica)

Melquíades Barragán Condori
Universidad Nacional Intercultural de Quillabamba, Perú
Juan Marcos Aro Aro
Departamento de Agroindustria, Universidad Nacional del Altiplano de Puno, Perú
Alex Ernesto Muñoz Cáceres
Universidad Nacional Micaela Bastidas de Abancay, Perú
Josué Rodríguez Mendoza
Universidad Nacional Micaela Bastidas de Abancay, Perú

Publicado 2020-08-30

Palabras clave

  • Antocianinas,
  • polifenoles,
  • antioxidantes,
  • radicales libres,
  • flavonoides

Cómo citar

Barragán Condori, M., Aro Aro, J. M., Muñoz Cáceres, A. E., & Rodríguez Mendoza, J. (2020). Determinación de antocianinas y capacidad antioxidante en extractos de (Muehlembeckia volcanica). Revista De Investigaciones Altoandinas - Journal of High Andean Research, 22(2), 161-169. https://doi.org/10.18271/ria.2020.604

Resumen

Se ha caracterizado, cuantificado y determinado la capacidad antioxidante en extractos de frutos de (Muehlembeckia volcanica), para lo cual se extrajo los pigmentos antociánicos con metanol acidificado al 0.01% HCl, se filtró, concentró, centrifugo y aforó a un volumen conocido para su posterior análisis. En el extracto se evaluó el contenido de antocianinas totales (CAT) por el método de pH diferencial, polifenoles totales (PFT) por el método Folin-Ciocalteu y su capacidad antioxidante por el Metodo TEAC DPPH. Los extractos caracterizados por espectrofotometría UV-Vis presentan valores máximos de absorbancia a 520 nm que corresponden a estructuras antociánicas ya establecidas, del mismo modo por espectroscopia FTIR-ATR se observan fuertes señales de absorción a diferentes valores de frecuencias de vibración que corresponden a grupos funcionales de antocianinas. Los cromatogramas de HPLC del extracto pertenecen a antocianidinas delfinidina y petunidina. Se determinó en extractos que el contenido de antocianinas es de 171.85 (mg cianidina 3-glucosido/100g), polifenoles totales de 275.55 (mg ácido gálico / 100 g) y su capacidad antioxidante TEAC DPPH de 31.37 (µmol trolox/g). Por su alto contenido de CAT, PFT y capacidad antioxidante se concluye que estos frutos tienen alto poder antioxidante y puede ser usados como alimento funcional.

Referencias

  1. Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6(4), 42. doi: 10.3390/plants6040042
  2. Arencibia, J. A. (2018). Optimización de la extracción de antocianinas a partir de manzana malaya (Syzygium malaccense). Revista de Ciencias Farmacéuticas y Alimentarias, 4(1).
  3. Barragán Condori, M., Aro Aro, J. M., Meléndez, H., Justiniano, V., & Cartagena Cutipa, R. (2018). Antocianinas, compuestos fenólicos y capacidad antioxidante del mio-mio (Coriaria ruscifolia L). Revista de Investigaciones Altoandinas, 20(4), 419-428. doi: 10.18271/ria.2018.419.
  4. Barreto, M. A., Cánoves, A. F., & Más, M. J. E. (2016). Determinación de polifenoles totales en arándanos y productos derivados. UCV-SCIENTIA/Journal of Scientific Research of University Cesar Vallejo, 8(1), 13-21. doi: 10.18050/revucv-scientia.v8n1a1
  5. Bontempo, P., De Masi, L., Carafa, V., Rigano, D., Scisciola, L., Iside, C., . . . Nebbioso, A. (2015). Anticancer activities of anthocyanin extract from genotyped Solanum tuberosum L.“Vitelotte”. Journal of Functional Foods, 19, 584-593. doi: 10.1016/j.jff.2015.09.063
  6. Brand-Williams, W., Cuvelier, M.-E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30. doi: 10.1016 / s0023-6438 (95) 80008-5
  7. Bridle, P., & Timberlake, C. (1997). Anthocyanins as natural food colours—selected aspects. Food chemistry, 58(1), 103-109. doi: 10.1016/S0308-8146(96)00222-1
  8. Canchos Chipana, C., Veramendi, R., & Eva-gina, J. (2016). Determinación de capacidad antioxidante y fenoles totales en zumo y cáscara de Vaccinium corymbosum, arándanos del valle de cañete. http://repositorio.unjfsc.edu.pe/handle/UNJFSC/139
  9. Cassidy, A. (2018). Berry anthocyanin intake and cardiovascular health. Molecular aspects of medicine, 61, 76-82. doi: 10.1016/j.mam.2017.05.002
  10. Castillo, G., Michelena, G., Nogueiras, C., Ortega, G., Bello, D., Guerra, M., . . . Mieres, G. (2010). Caracterización cromatográfica y espectroscópica de un pigmento rojo obtenido a partir de Bothryodiplodia theobromae. https://www.redalyc.org/pdf/2231/223120684003.pdf
  11. Cervantes-Sierra, R., Barragán-Condori, M., & Chaquilla-Quilca, G. (2019). Evaluación de antioxidantes en el té de hojas de camote morado (Ipomoea batatas L.). Revista Tecnología en Marcha, ág. 51-59. doi: 10.18845/tm.v32i4.4790
  12. Cömert, E. D., Mogol, B. A., & Gökmen, V. (2020). Relationship between color and antioxidant capacity of fruits and vegetables. Current Research in Food Science, 2, 1-10. doi: 10.1016/j.crfs.2019.11.001
  13. Del Carpio Jiménez, C., Serrano Flores, C., & Giusti, M. (2009). Caracterización de las antocianinas de los frutos de Berberis boliviana Lechler. Revista de la Sociedad Química del Perú, 75(1), 76-86.
  14. Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2011). InfoStat.
  15. Garzón, G. A. (2008). Las antocianinas como colorantes naturales y compuestos bioactivos: revisión. Acta Biológica Colombiana, 13(3), 27-36.
  16. Gaviria, C. A., Ochoa, C. I., Sánchez, N., Medina, C., Lobo, M., Galeano, P. L., . . . Rojano, B. (2009). Propiedades antioxidantes de los frutos de agraz o mortiño (Vaccinium meridionale Swartz). Perspectivas del cultivo de agraz o mortiño en la zona altoandina de Colombia. Colombia: Universidad Nacional de Colombia, 95-112.
  17. Giusti, M. M., & Wrolstad, R. E. (1996). Characterization of red radish anthocyanins. Journal of Food Science, 61(2), 322-326. doi: 10.1111/j.1365-2621.1996.tb14186.x
  18. Guerrero, J., Ciampi, L., Castilla, A., Medel, F., Schalchli, H., Hormazabal, E., . . . Alberdi, M. (2010). Antioxidant capacity, anthocyanins, and total phenols of wild and cultivated berries in Chile. Chilean Journal of Agricultural Research, 70(4), 537-544. doi: 10.4067/S0718-58392010000400002
  19. Haddar, W., Ben Ticha, M., Meksi, N., & Guesmi, A. (2018). Application of anthocyanins as natural dye extracted from Brassica oleracea L. var. capitata f. rubra: dyeing studies of wool and silk fibres. Natural product research, 32(2), 141-148. doi: 10.1080/14786419.2017.1342080
  20. Hong, S. H., Heo, J.-I., Kim, J.-H., Kwon, S.-O., Yeo, K.-M., Bakowska-Barczak, A. M., . . . Kang, Y.-H. (2013). Antidiabetic and Beta cell-protection activities of purple corn anthocyanins. Biomolecules & therapeutics, 21(4), 284.
  21. León, S., & Elisa, D. (2012). Estudio del potencial antioxidante de la mora (Rubus glaucus Benth) y sus cambios en función del proceso de maduración y bajo diferentes temperaturas de almacenamiento. Universidad Nacionalde Colombia.
  22. Menzies, I. J., Youard, L. W., Lord, J. M., Carpenter, K. L., van Klink, J. W., Perry, N. B., . . . Gould, K. S. (2016). Leaf colour polymorphisms: a balance between plant defence and photosynthesis. Journal of Ecology, 104(1), 104-113. doi: 10.1111/1365-2745.12494
  23. Nardini, M., & Garaguso, I. (2020). Characterization of bioactive compounds and antioxidant activity of fruit beers. Food chemistry, 305, 125437. doi: 10.1016/j.foodchem.2019.125437
  24. Navarro Soto, A. J. (2018). Cuantificación de los compuestos polifenólicos y evaluación de la actividad antioxidante de los extractos hidroalcohólicos de Anacardium occidentale L, Muehlenbeckia volcanica (Benth.) Endl. y Gamochaeta purpurea (L.) Cabrera.
  25. Navas, M. J., Jiménez-Moreno, A. M., Bueno, J. M., Saez-Plaza, P., & Asuero, A. G. (2012). Analysis and antioxidant capacity of anthocyanin pigments. Part IV: Extraction of anthocyanins. Critical Reviews in Analytical Chemistry, 42(4), 313-342. doi: 10.1080/10408347.2012.680343
  26. Ortega, G. M., & Guerra, M. (2006). Separación, caracterización estructural y cuantificación de antocianinas mediante métodos químico-físicos. Parte II. ICIDCA. Sobre los Derivados de la Caña de Azúcar, 40(3), 3-11.
  27. Paraíso, C. M., dos Santos, S. S., Ogawa, C. Y. L., Sato, F., dos Santos, O. A., & Madrona, G. S. (2020). Hibiscus sabdariffa L. Extract: Characterization (FTIR-ATR), Storage Stability and Food Application. Emirates Journal of Food and Agriculture. doi: 10.9755/ejfa.2020.v32.i1.2059
  28. Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. A. (2008). Introduction to spectroscopy: Cengage Learning.
  29. Rangel-Huerta, O. D., Pastor-Villaescusa, B., Aguilera, C. M., & Gil, A. (2015). A systematic review of the efficacy of bioactive compounds in cardiovascular disease: phenolic compounds. Nutrients, 7(7), 5177-5216. doi: 10.3390/nu7075177
  30. Saulle, R., Semyonov, L., & La Torre, G. (2013). Cost and cost-effectiveness of the Mediterranean diet: results of a systematic review. Nutrients, 5(11), 4566-4586. doi: 10.3390/nu5114566
  31. Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in enzymology, 299, 152-178. doi: 10.1016/S0076-6879(99)99017-1
  32. Vieira, G. S., Marques, A. S., Machado, M. T., Silva, V. M., & Hubinger, M. D. (2017). Determination of anthocyanins and non-anthocyanin polyphenols by ultra performance liquid chromatography/electrospray ionization mass spectrometry (UPLC/ESI–MS) in jussara (Euterpe edulis) extracts. Journal of food science and technology, 54(7), 2135-2144. doi: 10.1007%2Fs13197-017-2653-1
  33. Wang, Y., Luan, G., Zhou, W., Meng, J., Wang, H., Hu, N., & Suo, Y. (2018). Subcritical water extraction, UPLC-Triple-TOF/MS analysis and antioxidant activity of anthocyanins from Lycium ruthenicum Murr. Food chemistry, 249, 119-126. doi: 10.1016/j.foodchem.2017.12.078
  34. Welch, C. R., Wu, Q., & Simon, J. E. (2008). Recent advances in anthocyanin analysis and characterization. Current analytical chemistry, 4(2), 75-101. doi: 10.2174/157341108784587795.
  35. Xie, L., Su, H., Sun, C., Zheng, X., & Chen, W. (2018). Recent advances in understanding the anti-obesity activity of anthocyanins and their biosynthesis in microorganisms. Trends in Food Science & Technology, 72, 13-24. doi: 10.1016/j.tifs.2017.12.002
  36. Zapata, L., Heredia, A. M., Quinteros, C. F., Malleret, A. D., Clemente Polo, G., & Cárcel Carrión, J. A. (2014). Optimización de la extracción de antocianinas de arándanos. Ciencia, docencia y tecnología, 25(49), 166-192. doi: 10251/66805
  37. Zhao, C.-L., Yu, Y.-Q., Chen, Z.-J., Wen, G.-S., Wei, F.-G., Zheng, Q., . . . Xiao, X.-L. (2017). Stability-increasing effects of anthocyanin glycosyl acylation. Food chemistry, 214, 119-128. doi: 0.1016/j.foodchem.2016.07.073