Vol. 24 Núm. 4 (2022)
Artículo original

Aceite de Metohuayo (Caryodendron orinocense Karst) Obtenido por Prensado Hidráulico y Expeller: Análisis de Rendimiento y Características Físico-química

Víctor Delgado-Soriano
UNIVERSIDAD NACIONAL AGRARIA LA MOLINA
Yessy Espinoza
Universidad Nacional Agraria La Molina, Facultad de Industrias Alimentarias, Departamento de Tecnología de Alimentos y Productos Agropecuarios, Av. La Universidad s/n. La Molina, Lima. Perú
Rubén Torre
Universidad Nacional Agraria La Molina, Facultad de Industrias Alimentarias, Departamento de Tecnología de Alimentos y Productos Agropecuarios, Av. La Universidad s/n. La Molina, Lima. Perú.
Christian R. Encina-Zelada
Universidad Nacional Agraria La Molina, Facultad de Industrias Alimentarias, Departamento de Tecnología de Alimentos y Productos Agropecuarios, Av. La Universidad s/n. La Molina, Lima. Perú.

Publicado 2022-11-08

Palabras clave

  • Semillas oleaginosas, tecnología verde, subutilizado, análisis de componentes principales (PCA), maní del monte.

Cómo citar

Delgado-Soriano, V., Espinoza, Y., Torre, R., & Encina-Zelada, C. R. (2022). Aceite de Metohuayo (Caryodendron orinocense Karst) Obtenido por Prensado Hidráulico y Expeller: Análisis de Rendimiento y Características Físico-química. Revista De Investigaciones Altoandinas, 24(4), 236–247. https://doi.org/10.18271/ria.2022.446

Resumen

El objetivo principal de la investigación fue obtener aceite de metohuayo mediante prensado hidráulico versus expeller (a 50, 70 y 90 °C). Se evaluó el rendimiento de extracción y se caracterizaron las propiedades físico-químicas del aceite. La semilla destacó por su alto contenido de grasa (40,5 %) y color L* (29,3), a* (9,7) y b* (18,4). El prensado en expeller a 50 °C presentó los valores máximos de rendimiento y recuperación de aceite con 39,2% y 96,9%, respectivamente. La misma tendencia se pudo apreciar en los parámetros de calidad analizados: índice de acidez, índice de peróxido, índice de p-anisidina y coeficientes K232 y K268, donde los valores evidenciaron un incremento con las temperaturas del prensado en expeller. Los resultados mostraron que el conjunto de características físico-químicas permiten el reconocimiento y diferenciación de los aceites obtenidos en relación con la temperatura; y mediante Análisis de Componentes Principales (PCA) se pudo inferir que este tipo de datos sirve como herramienta de reconocimiento preliminar para distinguir el efecto de los métodos de extracción. Finalmente, los aceites obtenidos por ambos métodos, aunque presentaron diferencias estadísticas (p<0,05) en sus características físico-químicas, mostraron valores dentro de los rangos establecidos por el Codex Alimentarius. Estos resultados proponen la extracción de aceite mediante prensado en expeller como un proceso tecnológico que mejora, en comparación con el prensado hidráulico, el aprovechamiento del aceite de semillas de metohuayo producido en los Andes tropicales, conforme a las nuevas exigencias del mercado.

Citas

  1. Alfaro, M., Padilla, C. y Pérez, M. (2000). Caryodendron orinocense (“nuez de Barinas”) oil: Tocopherol content and use in cosmetics. International Journal of Cosmetic Science, 22, 335–340. https://doi.org/10.1046/j.1467-2494.2000.00034.x
  2. AOAC International. (2016). Official methods of analysis of AOAC International. 20th ed. AOAC International, Rockville, MD.
  3. AOCS – American Oil Chemists Society. (1998). Official methods and recommended practices of the AOCS. 5th ed. AOCS Press, II.
  4. Barakat, H. y Ghazal, G. (2016). Physicochemical Properties of Moringa oleifera Seeds and Their Edible Oil Cultivated at Different Regions in Egypt. Food and Nutrition Sciences, 7 (6): 472–484. DOI: 10.4236/fns.2016.76049
  5. Bekhit, E., Shavandi, A., Jodjaja, T., Birch, J., Teh, S., Ahmed, I. y Bekhit, A. (2018). Flaxseed: Composition, detoxification, utilization, and opportunities. Biocatalysis and Agricultural Biotechnology, 13: 129–152. https://doi.org/10.1016/j.bcab.2017.11.017
  6. Choo, W., Birch, J. y Dufour, J. (2007). Physicochemical and quality characteristics of cold-pressed flaxseed oils. Journal of Food Composition and Analysis, 20 (3-4): 202–211. https://doi.org/10.1016/j.jfca.2006.12.002
  7. Chung, K., Shin, K., O. Hwang, H. y Choi, K. (2013). Chemical composition of nuts and seeds sold in Korea. Nutrition Research and Practice, 7 (2): 82–88. doi: 10.4162/nrp.2013.7.2.82
  8. Cisneros, D. y Díaz, A. (2006). Obtención de aceite de la nuez Caryodendron orinocense originaria del departamento del Caquetá en la planta piloto de la Universidad de La Salle. Universidad de La Salle, Facultad de Ingeniería de Alimentos. Bogotá. Colombia. https://bit.ly/3v3K8lX
  9. Codex Aimentarius (2021). Norma para grasas y aceites comestibles no regulados por normas individuales: CODEX STAN 19-1981. https://bit.ly/3xKItDl
  10. Decker, E., Mcclements, D., Bourlieu-Lacanal, C., Durand, E., Figueroa, M., Lecomte, J. y Villenueve, P. (2017). Hurdles in predicting antioxidant efficacy in oil-in-water emulsions. Trends in Food Science and Technology, 67: 183–194. https://hal.archives-ouvertes.fr/hal-01605571
  11. de Jesus, S y Filho, R. (2020). Recent advances in lipid extraction using green solvents. Renewable and Sustainable Energy Reviews, 133. 110289. https://doi.org/10.1016/j.rser.2020.110289
  12. Duke, J. (2017). Handbook of Nuts; CRC Press: Boca Raton, FL, USA; ISBN 9781351071130. https://doi.org/10.1201/9781351071130
  13. Ebrahimian, E., Seyyedi, S., Byborde, A. y Damalas, C. (2019). Seed yield and oil quality of sunflower, safflower, and sesame under different levels of irrigation water availability. Agricultural Water Management, 218: 149–157. https://doi.org/10.1016/j.agwat.2019.03.031
  14. Escobar-Mamani, F., Branca, D. y Haller, A. (2020). Investigación de montaña sobre y para la región andina. Revista de Investigaciones Altoandinas - Journal of High Andean Research, 22(4), 311–312. https://doi.org/10.18271/ria.2020.191
  15. Fernández, J., Pascual, G., Silva, M., Salvá, B., Guevara, A. y Encina, C. (2018). Efecto del tratamiento enzimático de la semilla de moringa (Moringa oleífera) sobre las características físico-químicas del aceite obtenido por extracción con prensa expeller. Scientia Agropecuaria, 9 (3): 371 – 380. https://doi.org/10.17268/sci.agropecu.2018.03.08
  16. Ferreira, M., Lotte, R., D’Elia, F., Stamatopoulos, C., Kim, D. y Benjamin, A. (2021). Accurate mapping of Brazil nut trees (Bertholletia excelsa) in Amazonian forests using WorldView-3 satellite images and convolutionalneural networks. Ecological Informatics, 63: 101302. https://doi.org/10.1016/j.ecoinf.2021.101302
  17. GBIF Backbone Taxonomy. (2022). Caryodendron orinocense Karst. Recuperado de https://doi.org/10.15468/39omei
  18. Greffa, J., Barrionuevo, A., Vilcacundo, E. y Carrillo. W. (2018). Gastrointestinal digestion of kahai protein concentrate (Caryodendron orinocense Karst). Asian J Pharm Clin Res, 11(6), 397–400. http://dx.doi.org/10.22159/ajpcr.2018.v11i6.20374
  19. Haller, A. y Branca, D. (2020). Montología: una perspectiva de montaña hacia la investigación transdisciplinaria y el desarrollo sustentable. Journal of High Andean Research, 22(4), 313–332. https://doi.org/10.18271/ria.2020.193
  20. Hussein, A., Hussein, M., Salama, M., Hamed, I., Fouda, K. y Mohamed, R. (2018). Formulation and Evaluation of Functional Cookies for Improving Health of Primary School Children. Pakistan Journal of Biological Sciences, 21, 401–408. https://doi.org/10.3923/pjbs.2018.401.408
  21. International Plant Genetic Resources Institute (IPGRI). (2001). Phaseolus vulgaris descriptors. Recuperado de https://bit.ly/3MnbzNe
  22. Kapoor, S., Gandhi, N., Tyagi, S., Kaur, A. y Mahajan, B. (2020). Extraction and characterization of guava seed oil: A novel industrial byproduct. LWT - Food Science and Technology 132, 109882. https://doi.org/10.1016/j.lwt.2020.109882
  23. Konopka, I., Roszkowska, B., Czaplicki, S. y Tańska, M. (2016). Optimization of pumpkin oil recovery by using aqueous enzymatic extraction and comparison of the quality of the obtained oil with the quality of cold-pressed oil. Food Technol. Biotechnol, 54 (4): 413–420. doi: 10.17113/ftb.54.04.16.4623
  24. Krumreich, F., Borges, C., Mendonça, C., Jansen-Alves, C. y Zambiazi, R. (2018). Bioactive compounds and quality parameters of avocado oil obtained by different processes. Food Chemistry, 257: 376–381. https://doi.org/10.1016/j.foodchem.2018.03.048
  25. Leal, M., Alves, R. y Hanazaki, N. (2018). Knowledge, use, and disuse of unconventional food plants. Journal Ethnobiology Ethnomedicine, 14:6. https://doi.org/10.1186/s13002-018-0209-8
  26. Lewis, M. J. 1993. Propiedades físicas de los alimentos y de los sistemas de procesado Editorial Acribia S.A. Zaragosa, España. 514 pp. https://bit.ly/3vDJvOU
  27. Lopes, G., Ghazani, S., Corazza, M., Marangoni, A. y Hoffmann, R. (2018). Assessment of subcritical propane, supercritical CO2 and Soxhlet extraction of oil from sapucaia (Lecythis pisonis) nuts. The Journal of Supercritical Fluids, 133, 122–132. http://dx.doi.org/10.1016/j.supflu.2017.10.003
  28. Martínez, M., Bordón, M., Lallanas, R., Ribotta, P. y Maestri, D. (2017). Optimization of Sesame Oil Extraction by Screw-Pressing at Low Temperature. Food Bioprocess and Technology, 10 (6): 1113–1121. DOI: 10.1007/s11947-017-1885-4
  29. Martínez, M., Mattea, M. y Maestri, D. (2008). Pressing and supercritical carbon dioxide extraction of walnut oil. Journal of Food Engineering, 88 (3): 399–404. https://doi.org/10.1016/j.jfoodeng.2008.02.026
  30. Martínez, M., Penci, M., Marin, M., Ribotta, P. y Maestri, D. (2013). Screw press extraction of almond (Prunus Dulcis (Miller) D.A. Webb): Oil recovery and oxidative stability. Journal of Food Engineering, 119 (1): 40–45. https://doi.org/10.1016/j.jfoodeng.2013.05.010
  31. Matthäus, B. (2010). Oxidation of edible oils. En E.A Decker; R.J Elias; D.J. McClements. Oxidation in foods and beverages and antioxidant applications (p. 183-238). Cambridge, Reino Unido: Woodhead publishing. https://bit.ly/3EzaDmo
  32. Medeiros de Azevedo, W., Ferreira, L., Alves, M., Tribuzy de Magalhães, A., Florentino da Silva, K. y Kelly de Araujo, N. (2020) Physicochemical characterization, fatty acid profile, antioxidant activity and antibacterial potential of cacay oil, coconut oil and cacay butter. PLoS ONE, 15(4): e0232224. https://doi.org/10.1371/journal.pone.0232224
  33. Mraicha, F., Ksantini, M., Zouchb, O., Ayadi, M., Sayadi, S. y Bouaziz, M. (2010). Effect of olive fruit fly infestation on the quality of olive oil from Chemlali cultivar during ripening. Food and Chemical Toxicology, 48 (11): 3235–3241. DOI: 10.1016/j.fct.2010.08.031
  34. Mridula, D., Barnwal, P. y Singh, K. (2015). Screw pressing performance of whole and dehulled flaxseed and some physico-chemical characteristics of flaxseed oil. Journal of Food Science and Technology, 52 (3), 1498–1506. doi: 10.1007/s13197-013-1132-6
  35. Muangrat, R., Veeraphong, P. y Chantee, N. (2018). Screw press extraction of Sacha inchi seeds: Oil yield and its chemical composition and antioxidant properties. Journal of Food Processing and Preservation, 42 (6): e13635. https://doi.org/10.1111/jfpp.13635
  36. Naik, M., Natarajan, V., Rawson, A., Rangarajan, J. y Manickam, L. (2021). Extraction kinetics and quality evaluation of oil extracted from bitter gourd (Momardica charantia L.) seeds using emergent technologies. LWT - Food Science and Technology, 140, 110714. https://doi.org/10.1016/j.lwt.2020.110714
  37. Nevara, G., Yea, C., Karim, R., Muhammad, K. y Ghazali, H. (2018). Effects of moistheat treatments on color improvement, physicochemical, antioxidant, and resistant starch properties of drum-dried purple sweet potato powder. Journal of Food Process Engineering, 42 (1): e12951. https://doi.org/10.1111/jfpe.12951
  38. Ok, S. y Yilmaz, E. (2019). The Pretreatment of the Seeds Affects the Quality and Physicochemical Characteristics of Watermelon Oil and Its By-Products. J Am Oil Chem Soc. 96: 453–466. https://doi.org/10.1002/aocs.12191
  39. Padilla, F., Alvarez, M. y Alfaro, M. (1996). Functional properties of barinas nut flour (Caryodendron orinocense Karst., Euphorbiaceae) compared to those of soybean. Food Chemisrry, 57, 191–196. https://bit.ly/3v1GUPW
  40. Pascual-Chagman1, G., Santa-Cruz-Olivos, J., Hidalgo, A., Benavente, F., Pérez-Camino, M., Sotelo-Mendez, A., Paucar-Menacho, L. y Encina-Zelada, C. (2021). Aceite de Lupinus mutabilis obtenido por prensa expeller: Análisis de rendimiento, caracterización fisicoquímica, capacidad antioxidante, ácidos grados y estabilidad oxidativa. Scientia Agropecuaria, 12 (2): 219–227. http://dx.doi.org/10.17268/sci.agropecu.2021.025
  41. Pérez, M., Alfaro, M. y Padilla, F. (1999). Evaluation of ‘nuez de Barinas’ (caryodendron orinocense) oil for possible use in cosmetic. International Journal of Cosmetic Science, 21, 151–158. https://doi.org/10.1046/j.1467-2494.1999.196565.x
  42. Radice, M., Viafara, D., Neill, D., Asanza, M., Sachetti, G., Guerrini, A. y Maietti, S. (2014). Chemical characterization and antioxidant of Amazonian (Ecuador) Caryodendron orinocense Karst. and Bextris gasipaes Kunth Seed oils. Journal of Oleo Science, 63,(12) 1243-1250. DOI: 10.5650/jos.ess14007
  43. Rincón, C., Tejada, M. y Jiménez, J. (2020). Design and Analysis of an Automatic Shell Cracking Machine of Metohuayo (“Caryodendron orinocense Karst”) with a Capacity of 50 kg/h. Agriculture, 10 (11), 537. https://doi.org/10.3390/agriculture10110537
  44. Rodrigues, N., Malheiro, R., Casal, S., Asensio-S-Manzanera, M., Bento, A. y Pereira, J. (2012). Influence of spike lavender (Lavandula latifolia Med.) essential oil in the quality, stability and composition of soybean oil during microwave heating. Food and Chemical Toxicology, 50: 2894–2901. DOI: 10.1016/j.fct.2012.05.020
  45. Rosa, P., Antoniassi, R., Freitas, S., Bizzo, H., Zanotto, D., Oliveira, M. y Castiglion, V. (2009). Chemical composition of Brazilian sunflower varieties. Helia, 32(50): 45–155. https://doi.org/10.2298/hel0950145r
  46. Satriana, S., Supardan, M., Arpi, N. y Mustapha, W. (2019). Development of methods used in the extraction of avocado oil. European Journal of Lipid Science and Technology, 121, 1800210. https://doi.org/10.1002/ejlt.201800210
  47. Savoire, R., Lanoisellé, J. y Vorobiev, E. (2012). Mechanical continuous oil expression from oilseeds: A Review. Food Bioprocess Technology, 6 (1): 1–6. https://doi.org/10.1007/s11947-012-0947-x
  48. Silvia, D., Masturah, M. y Bhat, R. (2012).The effects of different extraction temperatures of the screw press on proximate compositions, amino acid contents and mineral contents of Nigella sativa meal. American Journal of Food Technology, 7 (4): 180–191. DOI: 10.3923/ajft.2012.180.191
  49. Stadtlander, T. y Becker, K. (2017). Proximate composition, amino and fatty acid profiles and element compositions of four different Moringa species. Journal of Agricultural Science, 9(7): 46–57. DOI: 10.5539/jas.v9n7p46
  50. Stojceska, V., Ainsworth, P., Plunkett, A., y Ibanoglu, S. (2009). The effect of extrusion cooking using different water feed rates on the quality of readyto-eat snacks made from food by-products. Food Chemistry, 114(1): 226–232. http://dx.doi.org/10.1016/j.foodchem.2008.09.043.
  51. Ugarte-Espinoza, P., Delgado-Soriano, V., Estivi, L., Hidalgo, A. y Pascual-Chagman, G. (2021). Goldenberry (Physalis peruviana L.) seed oil: press extraction, optimization, characterization, and oxidative stability. Italian Journal of Food Science, 33 (4): 107–117. https://doi.org/10.15586/ijfs.v33i4.2123
  52. Vargas, M., Gutarra, H., Delgado-Soriano, V., Cortés-Avendaño, P. y Elías, C. (2020). Ácidos grasos y criterios de calidad del aceite de palta obtenido mediante tres sistemas de extracción libres de solvente. Agroind. sci. 10 (1): 71–77. http://dx.doi.org/10.17268/agroind.sci.2020.01.10
  53. Yate, A., Narváez, P., Orjuela, A., Hernández, A. y Acevedo, H. (2020). A systematic evaluation of the mechanical extraction of Jatropha curcas L. oil for biofuels production. Food and Bioproducts Processing, 122, 72–81. https://doi.org/10.1016/j.fbp.2020.04.001