Vol. 19 No. 3 (2017)
Original articles

Multi-temporal analysis between 1975 and 2015 on changes in glacier coverage in the snowy Allin Capac and Chichi Capac, Peru

Renny Daniel Díaz Aguilar
National University of the Altiplano Puno Peru
Samantha Vanessa Sanchez Larico
National University of the Altiplano Puno Peru
Apolinario Lujano Laura
National University of the Altiplano Puno Peru

Published 2017-09-27

Keywords

  • Climate change,
  • cordillera of Carabaya,
  • NDSI,
  • glacier retreat

How to Cite

Díaz Aguilar, R. D. ., Sanchez Larico, S. V. ., Lujano Laura, E. ., & Lujano Laura, A. (2017). Multi-temporal analysis between 1975 and 2015 on changes in glacier coverage in the snowy Allin Capac and Chichi Capac, Peru. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 19(3), 264-274. https://doi.org/10.18271/ria.2017.291

Abstract

The objective of the study was the multi-temporal analysis between 1975 and 2015, on changes in glacier coverage in the snowy Allin Capac and Chichi Capac, Peru. The area covered by glaciers was estimated using the supervised classification method for Landsat 2 image and the normalized difference snow index for Landsat 5 and Landsat 8 images. The results of the analysis show a drastic decrease of the glacier cover in the snowy Allin Capac and Chichi Capac. Thus, in 1975 the area of ​​glacier coverage was 52.3 km2 and by 2015 was reduced to 16.9 km2, losing a total of 35.6 km2. In 1975, the 35% of the glacier coverage was below the 5000 m.a.s.l. and by the 2015 it represents only 9% of the total glacier area. The greatest setback is evident in the last three decades of the 20th century, with a smaller decline during the first two decades of the 21th century. It is concluded that in the last 40 years, the glacier cover of the snowy Allin Capac and Chichi Capac shows a reduction of 67%, equivalent to a decrease of 17% per decade and an average rate of 0.89 km2 / year.

 

References

  1. Autoridad Nacional del Agua. (2014). Inventario nacional de glaciares y lagunas. Retrieved from http://www.ana.gob.pe/media/981508/glaciares.pdf
  2. Bury, J. T., Mark, B. G., McKenzie, J. M., French, A., Baraer, M., Huh, K. I., … Gómez López, R. J. (2011). Glacier recession and human vulnerability in the Yanamarey watershed of the Cordillera Blanca, Peru. Climatic Change, 105(1), 179–206. https://doi.org/10.1007/s10584-010-9870-1
  3. Chander, G., & Markham, B. (2003). Revised landsat-5 tm radiometric calibration procedures and postcalibration dynamic ranges. IEEE Transactions on Geoscience and Remote Sensing, 41(11), 2674–2677. https://doi.org/10.1109/TGRS.2003.818464
  4. Chander, G., Markham, B., & Helder, D. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment (Vol. 113). https://doi.org/10.1016/j.rse.2009.01.007
  5. Dozier, J. (1989). Spectral signature of alpine snow cover from the landsat thematic mapper. Remote Sensing of Environment, 28, 9–22. https://doi.org/10.1016/0034-4257(89)90101-6
  6. Hall, D. K., Riggs, G. A., & Salomonson, V. V. (1995). Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sensing of Environment, 54(2), 127–140. https://doi.org/10.1016/0034-4257(95)00137-P
  7. Huang, B., Banzon, V. F., Freeman, E., Lawrimore, J., Liu, W., Peterson, T. C., … Zhang, H. M. (2015). Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. Journal of Climate, 28(3), 911–930. https://doi.org/10.1175/JCLI-D-14-00006.1
  8. Kaser, G. (1999). A review of the modern fluctuations of tropical glaciers. Global and Planetary Change, 22(1–4), 93–103. https://doi.org/10.1016/S0921-8181(99)00028-4
  9. Kaser, G., & Georges, C. (1999). On the Mass Balance of Low Latitude Glaciers with Particular Consideration of the Peruvian Cordillera Blanca. Geografiska Annaler, Series A: Physical Geography, 81(4), 643–651. https://doi.org/10.1111/1468-0459.00092
  10. López-Moreno, J. I., Fontaneda, S., Bazo, J., Revuelto, J., Azorin-Molina, C., Valero-Garcés, B., … Alejo-Cochachín, J. (2014). Recent glacier retreat and climate trends in Cordillera Huaytapallana, Peru. Global and Planetary Change, 112, 1–11. https://doi.org/10.1016/j.gloplacha.2013.10.010
  11. López-Moreno, J. I., Valero-Garcés, B., Mark, B., Condom, T., Revuelto, J., Azorín-Molina, C., … Alejo-Cochachin, J. (2017). Hydrological and depositional processes associated with recent glacier recession in Yanamarey catchment, Cordillera Blanca (Peru). Science of The Total Environment, 579, 272–282. https://doi.org/10.1016/j.scitotenv.2016.11.107
  12. Mark, B. G. (2008). Tracing tropical Andean glaciers over space and time: Some lessons and transdisciplinary implications. Global and Planetary Change, 60(1–2), 101–114. https://doi.org/10.1016/j.gloplacha.2006.07.032
  13. Marshall, S. (2014). Glacier retreat crosses a line. Science, 345(6199), 872–872. https://doi.org/10.1126/science.1258584
  14. Marzeion, B., Jarosch, A. H., & Gregory, J. M. (2014). Feedbacks and mechanisms affecting the global sensitivity of glaciers to climate change. Cryosphere, 8(1), 59–71. https://doi.org/10.5194/tc-8-59-2014
  15. Medina, G., & Mejía, A. (2014). Análisis multitemporal y multifractal de la deglaciación de la Cordillera Parón en los Andes de Perú. Ecología Aplicada, 13(1), 35–42. Retrieved from http://www.scielo.org.pe/scielo.php?pid=S1726-22162014000100004&script=sci_arttext
  16. Monsef, H. A.-E., & Smith, S. E. (2017). A new approach for estimating mangrove canopy cover using Landsat 8 imagery. Computers and Electronics in Agriculture, 135, 183–194. https://doi.org/10.1016/j.compag.2017.02.007
  17. Oerlemans, J. (2005). Extracting a Climate Signal from 169 Glacier Records. Science, 308(5722), 675–677. https://doi.org/10.1126/science.1107046
  18. Polk, M. H., Young, K. R., Baraer, M., Mark, B. G., McKenzie, J. M., Bury, J., & Carey, M. (2017). Exploring hydrologic connections between tropical mountain wetlands and glacier recession in Peru’s Cordillera Blanca. Applied Geography, 78, 94–103. https://doi.org/10.1016/j.apgeog.2016.11.004
  19. Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., … Woollen, J. (2011). MERRA: NASA’s modern-era retrospective analysis for research and applications. Journal of Climate, 24(14), 3624–3648. https://doi.org/10.1175/JCLI-D-11-00015.1
  20. Shimamura, Y., Izumi, T., & Matsuyama, H. (2006). Evaluation of a useful method to identify snow‐covered areas under vegetation – comparisons among a newly proposed snow index, normalized difference snow index, and visible reflectance. International Journal of Remote Sensing, 27(21), 4867–4884. https://doi.org/10.1080/01431160600639693
  21. Silverio, W., & Jaquet, J.-M. (2005). Glacial cover mapping (1987–1996) of the Cordillera Blanca (Peru) using satellite imagery. Remote Sensing of Environment, 95(3), 342–350. https://doi.org/10.1016/j.rse.2004.12.012
  22. Smith, T. M., Reynolds, R. W., Peterson, T. C., & Lawrimore, J. (2008). Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880-2006). Journal of Climate, 21(10), 2283–2296. https://doi.org/10.1175/2007JCLI2100.1
  23. Vuille, M., Francou, B., Wagnon, P., Juen, I., Kaser, G., Mark, B. G., & Bradley, R. S. (2008). Climate change and tropical Andean glaciers: Past, present and future. Earth-Science Reviews, 89, 79–96. https://doi.org/10.1016/j.earscirev.2008.04.002