Co-Digestion of Three Types of Manure (Cow, Guinea Pig and Pig) to Obtain Biogas in Southern Peru
Published 2022-08-25
Keywords
- biogas, co-digestion, manure, heavy metals.
How to Cite
Abstract
The lack of energy in rural areas is a problem that mainly affects developing countries. Efficient and sustainable alternatives are currently being sought that can solve this problem. The present investigation evaluated the volumetric production and biogas composition of 12 mixtures of three types of substrates (cow, pig and guinea pig manure), the substrates were characterized to know their percentage of moisture, ashes, organic matter, Kjeldahl nitrogen, C/N ratio and total metals, then the volumetric production of biogas was evaluated for 23 days in each system in triplicate and finally the composition of the biogas was analyzed, the contents of organic matter, nitrogen and C/N ratio were very similar to that reported by several authors, in the three substrates the presence of heavy metals such as copper and nickel was observed, only in cow manure was lead observed, on the other hand the presence of trace elements that are beneficial for anaerobic digestion such as selenium was also observed in guinea pig manure. The system that generated the highest volume of biogas was system S3, which contained 25% cow manure, 25% pig manure and 50% guinea pig manure, producing 33.6 ± 0.42% methane. The volumetric production and percentage of methane in the biogas was directly affected by the presence of metals that inhibit or slow down the development of methanogenic microorganisms.
References
- Aksay, M. V., Ozkaymak, M., & Calhan, R. (2018). Co-digestion of cattle manure and tea waste for biogas production. International Journal of Renewable Energy Research, 8(3), 1347–1353.
- Alfa, M. I., Owamah, H. I., Onokwai, A. O., Gopikumar, S., Oyebisi, S. O., Kumar, S. S., Bajar, S., Samuel, O. D., & Ilabor, S. C. (2021). Evaluation of biogas yield and kinetics from the anaerobic co-digestion of cow dung and horse dung: a strategy for sustainable management of livestock manure. Energy, Ecology and Environment, 6(5), 425–434.
- Alvarez, R., & Lidén, G. (2009). Low temperature anaerobic digestion of mixtures of llama, cow and sheep manure for improved methane production. Biomass and Bioenergy, 33(3), 527–533. https://doi.org/10.1016/j.biombioe.2008.08.012
- Ameen, F., Ranjitha, J., Ahsan, N., & Shankar, V. (2021). Co-digestion of microbial biomass with animal manure in three-stage anaerobic digestion. Fuel, 306, 121746.
- ASTM. (1998). ASTM Standards D 3173-87—Standard test method for moisture in the analysis sample of coal and coke. Annual Book of ASTM Standards, Section, 5, 301–302.
- ASTM. (2003). E1755-01 Standard method for the determination of ash in biomass. Annual Book of ASTM Standard.
- Avnimelech, Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176(3), 227–235. https://doi.org/10.1016/S0044-8486(99)00085-X
- Bacon, J. R., & Dinev, N. S. (2005). Isotopic characterisation of lead in contaminated soils from the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria. Environmental Pollution, 134(2), 247–255. https://doi.org/10.1016/j.envpol.2004.07.030
- Bhatnagar, N., Ryan, D., Murphy, R., & Enright, A. M. (2020). Trace element supplementation and enzyme addition to enhance biogas production by anaerobic digestion of chicken litter. Energies, 13(13). https://doi.org/10.3390/en13133477
- Cai, Y., Zheng, Z., Zhao, Y., Zhang, Y., Guo, S., Cui, Z., & Wang, X. (2018). Effects of molybdenum, selenium and manganese supplementation on the performance of anaerobic digestion and the characteristics of bacterial community in acidogenic stage. Bioresource Technology, 266, 166–175. https://doi.org/10.1016/J.BIORTECH.2018.06.061
- Carrère, H., Sialve, B., & Bernet, N. (2009). Improving pig manure conversion into biogas by thermal and thermo-chemical pretreatments. Bioresource Technology, 100(15), 3690–3694. https://doi.org/10.1016/j.biortech.2009.01.015
- Castro-Molano, L. del P., Parrales-Ramírez, Y. A., & Escalante-Hernández, H. (2019). Co-digestión anaerobia de estiércoles bovino, porcino y equino como alternativa para mejorar el potencial energético en digestores domésticos. Revista Ion, 32(2), 29–39.
- Demirel, B., & Scherer, P. (2011). Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass and Bioenergy, 35(3), 992–998. https://doi.org/10.1016/j.biombioe.2010.12.022
- El-Mashad, H. M., & Zhang, R. (2010). Biogas production from co-digestion of dairy manure and food waste. Bioresource Technology, 101(11), 4021–4028. https://doi.org/10.1016/j.biortech.2010.01.027
- Feng, X. M., Karlsson, A., Svensson, B. H., & Bertilsson, S. (2010). Impact of trace element addition on biogas production from food industrial waste - Linking process to microbial communities. FEMS Microbiology Ecology, 74(1), 226–240. https://doi.org/10.1111/j.1574-6941.2010.00932.x
- Garfí, M., Ferrer-Martí, L., Perez, I., Flotats, X., & Ferrer, I. (2011). Codigestion of cow and guinea pig manure in low-cost tubular digesters at high altitude. Ecological Engineering, 37(12), 2066–2070. https://doi.org/10.1016/j.ecoleng.2011.08.018
- Guo, Q., Majeed, S., Xu, R., Zhang, K., Kakade, A., Khan, A., Hafeez, F. Y., Mao, C., Liu, P., & Li, X. (2019). Heavy metals interact with the microbial community and affect biogas production in anaerobic digestion: A review. Journal of Environmental Management, 240, 266–272. https://doi.org/10.1016/J.JENVMAN.2019.03.104
- Hao, H., Tian, Y., Zhang, H., & Chai, Y. (2017). Copper stressed anaerobic fermentation: biogas properties, process stability, biodegradation and enzyme responses. Biodegradation, 28(5–6), 369–381. https://doi.org/10.1007/S10532-017-9802-0/FIGURES/7
- Jackson-Moss, C. A., Duncan, J. R., & Cooper, D. R. (1989). The effect of calcium on anaerobic digestion. Biotechnology Letters 1989 11:3, 11(3), 219–224. https://doi.org/10.1007/BF01026064
- Jain, A., Sarsaiya, S., Awasthi, M. K., Singh, R., Rajput, R., Mishra, U. C., Chen, J., & Shi, J. (2022). Bioenergy and bio-products from bio-waste and its associated modern circular economy: Current research trends, challenges, and future outlooks. Fuel, 307, 121859.
- Jain, S. K., Gujral, G. S., Jha, N. K., & Vasudevan, P. (1992). Production of biogas from Azolla pinnata R. Br and Lemna minor L.: Effect of heavy metal contamination. Bioresource Technology, 41(3), 273–277.
- Jones, J. B., & Stadtman, T. C. (1977). Methanococcus vannielii: culture and effects of selenium and tungsten on growth. Journal of Bacteriology, 130(3), 1404–1406. https://doi.org/10.1128/jb.130.3.1404-1406.1977
- Kamran, M., Ali, H., Saeed, M. F., Bakhat, H. F., Hassan, Z., Tahir, M., Abbas, G., Naeem, M. A., Rashid, M. I., & Shah, G. M. (2020). Unraveling the toxic effects of iron oxide nanoparticles on nitrogen cycling through manure-soil-plant continuum. Ecotoxicology and Environmental Safety, 205, 111099.
- Khumalo, S. C., Oyekola, O. O., & Okudoh, V. I. (2021). Evaluating input parameter effects on the overall anaerobic co-digestion performance of abattoir and winery solid wastes. Bioresource Technology Reports, 13, 100635.
- Kirk, P. L. (1950). Kjeldahl method for total nitrogen. Analytical Chemistry, 22(2), 354–358.
- Li, Y., Achinas, S., Zhao, J., Geurkink, B., Krooneman, J., & Euverink, G. J. W. (2020). Co-digestion of cow and sheep manure: Performance evaluation and relative microbial activity. Renewable Energy, 153, 553–563.
- Meneses Quelal, W. O., Velázquez-Martí, B., Gaibor Chávez, J., Niño Ruiz, Z., & Ferrer Gisbert, A. (2021). Evaluation of methane production from the anaerobic co-digestion of manure of guinea pig with lignocellulosic Andean residues. Environmental Science and Pollution Research 2021 29:2, 29(2), 2227–2243. https://doi.org/10.1007/S11356-021-15610-X
- Mudhoo, A., & Kumar, S. (2013). Effects of heavy metals as stress factors on anaerobic digestion processes and biogas production from biomass. International Journal of Environmental Science and Technology, 10(6), 1383–1398. https://doi.org/10.1007/S13762-012-0167-Y/TABLES/1
- Muthusaravanan, S., Sivarajasekar, N., Vivek, J. S., Vasudha Priyadharshini, S., Paramasivan, T., Dhakal, N., & Naushad, Mu. (2020). Research Updates on Heavy Metal Phytoremediation: Enhancements, Efficient Post-harvesting Strategies and Economic Opportunities (Issue January). https://doi.org/10.1007/978-3-030-17724-9_9
- Parawira, W. (2012). Enzyme research and applications in biotechnological intensification of biogas production. Critical Reviews in Biotechnology, 32(2), 172–186.
- Rubiales, I. S. (2011). Notas sobre la hoja de ruta hacia una economía hipocarbónica competitiva en 2050 (Comunicación de la Comisión de 8 de marzo de 2011, COM (2011) 112 final). Revista Catalana de Dret Ambiental, 2(1).
- Scarlat, N., Dallemand, J.-F., & Fahl, F. (2018). Biogas: Developments and perspectives in Europe. Renewable Energy, 129, 457–472.
- Sebola, M. R., Tesfagiorgis, H. B., & Muzenda, E. (2015). Methane production from anaerobic co-digestion of cow dung, chicken manure, pig manure and sewage waste. Lecture Notes in Engineering and Computer Science, 2217, 592–598.
- Tahir, M. S., Shahzad, K., Shahid, Z., Sagir, M., Rehan, M., & Nizami, A. (2015). Producing methane enriched biogas using solvent absorption method. Chemical Engineering Transactions, 45, 1309–1314.
- Toribio, L. K. P., Castro, G. O., Flores, J. W. V., Olivera, C. A. C., & Benites-Alfaro, E. G. (2020). Calorific value of biogas obtained by cavia porcellus biomass. Chemical Engineering Transactions, 80(October), 271–276. https://doi.org/10.3303/CET2080046
- U.S. Environmental Protection Agency. (1994). Method 200.7 - Determination of elements and trace elements in water and wastes by Inductively Coupled Plasma-Atomic Emmission Spectropemtry. US Environmental Protection Agency, EPA/600/4-, 31–82.
- Varnero, M. (2011). Manual del Biogás (Proyecto de barreras para la electrificación rural con energías renovables, Ed.; 1st ed.). Gobierno de Chile.