Vol. 25 No. 3 (2023)
Original articles

Spatio-Temporal Drought Assessment Using Standardized Precipitation Evapotranspiration Index (SPEI) over Mantaro Valley, Peru

Del Piero Raphael Arana Ruedas
Universidad Continental
Laura Soto Guerra
Universidad Peruana de Ciencias Aplicadas, Lima, Peru
Kanchan Popli
Hallym University, Gangwon-do, Chuncheon-si, Hallimdaehak-gil-1, Republic of Korea
Saadatu Gambo Madaki
National Council on Climate Change, 14 Visitula Close, Panama Street, Maitama, FCT, Nigeria

Published 2023-08-08

Keywords

  • Climate Change; Drought; SPEI; Mantaro Valley; Peruvian Tropical Andes

How to Cite

Arana Ruedas, D. P. R., Soto Guerra, L., Popli, K., & Gambo Madaki, S. (2023). Spatio-Temporal Drought Assessment Using Standardized Precipitation Evapotranspiration Index (SPEI) over Mantaro Valley, Peru. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 25(3), 159-170. https://doi.org/10.18271/ria.2023.525

Abstract

Peru has several studies based on the Peruvian Tropical Andes (PTA) and its effects due to climate change. It has been shown that due to orography characteristics, different kinds of climate conditions are seen. In that sense, the PTA has a very complex climate system, which causes significant variability mostly related to an increase in temperature and a decrease in precipitation patterns. The Mantaro Valley is located in the PTA, Junin region. Where vulnerable farmers are already affected by poverty, practice agriculture based on rain-fed cropping systems. Hence, climate variability causes agricultural vulnerability and water resource scarcity. This study aims to elaborate the Spatio-temporal drought assessment over Mantaro Valley to provide information on local climate change events. In order to do so, the Standardized Precipitation Evapotranspiration Index (SPEI), recognized by the World Meteorological Organization (WMO), was used. The results have shown that almost every station has clear evidence of warming over the years and only a precipitation decrease in two out of six stations. Furthermore, the Spatio-temporal analysis shows around 30% of drought events from the total data, considering the frequency, severity, and duration. In conclusion, it has been demonstrated that all analyzed stations within Mantaro Valley have the same deportment regarding drought characteristics with different highest frequency per time scale. Finally, it is recommended to keep tracking stations with the lowest available data, realize comparison analysis with different drought assessment methods, and study the correlation between drought and ENSO events and other climate events such as floods.

References

  1. Abdulla, F. (2020). 21st Century Climate Change Projections of Precipitation and Temperature in Jordan. Procedia Manufacturing, 44(2019), 197–204. https://doi.org/10.1016/j.promfg.2020.02.222
  2. Anderson, E., Marengo, J., Villalba, R., Halloy, S., Young, B., Cordero, D., Gast, F., Jaimes, E., & Ruiz, D. (2012). Consecuencias del cambio climático en los ecosistemas y servicios ecosistémicos de los Andes Tropicales. Climate Change and Biodiversity in the Tropical Andes, 410.
  3. Arana-Ruedas, D. P. R., & Moggiano, N. (2022). Agriculture and water resources: UNFCCC influence on Peruvian adaptation regulations to increase resilience against climate change. Scientia Agropecuaria, 13(3), 221–230. https://doi.org/10.17268/sci.agropecu.2022.020
  4. Ashraf, M., Ullah, K., & Adnan, S. (2022). Satellite based impact assessment of temperature and rainfall variability on drought indices in Southern Pakistan. International Journal of Applied Earth Observation and Geoinformation, 108, 102726. https://doi.org/10.1016/j.jag.2022.102726
  5. BCR. (2020). Características Socioconómicos Del Departamento De Junín. 17–3. http://maps.google.com/?ie=UTF8&ll=-11.79208,-75.157471&spn=4.666206,8.327637&z=71Participaronenlaelaboracióndeesteinforme
  6. Caldera, H. P. G. M., Piyathisse, V. R. P. C., & Nandalal, K. D. W. (2016). A Comparison of Methods of Estimating Missing Daily Rainfall Data. Engineer: Journal of the Institution of Engineers, Sri Lanka, 49(4), 1. https://doi.org/10.4038/engineer.v49i4.7232
  7. Callañaupa Gutierrez, S., Segura Cajachagua, H., Saavedra Huanca, M., Flores Rojas, J., Silva Vidal, Y., & Cuxart, J. (2021). Seasonal variability of daily evapotranspiration and energy fluxes in the Central Andes of Peru using eddy covariance techniques and empirical methods. Atmospheric Research, 261(December 2020). https://doi.org/10.1016/j.atmosres.2021.105760
  8. Ezaz, G. T., Zhang, K., Li, X., Shalehy, M. H., Hossain, M. A., & Liu, L. (2022). Spatiotemporal changes of precipitation extremes in Bangladesh during 1987–2017 and their connections with climate changes, climate oscillations, and monsoon dynamics. Global and Planetary Change, 208(October 2021), 103712. https://doi.org/10.1016/j.gloplacha.2021.103712
  9. Gumbo, A. D., Kapangaziwiri, E., Chikoore, H., & Pienaar, H. (2021). Assessing water resources availability in headwater sub-catchments of Pungwe River Basin in a changing climate. Journal of Hydrology: Regional Studies, 35(April), 100827. https://doi.org/10.1016/j.ejrh.2021.100827
  10. Javed, T., Zhang, J., Bhattarai, N., Sha, Z., Rashid, S., Yun, B., Ahmad, S., Henchiri, M., & Kamran, M. (2021). Drought characterization across agricultural regions of China using standardized precipitation and vegetation water supply indices. Journal of Cleaner Production, 313(June), 127866. https://doi.org/10.1016/j.jclepro.2021.127866
  11. Jurt, C., Burga, M. D., Vicuña, L., Huggel, C., & Orlove, B. (2015). Local perceptions in climate change debates: insights from case studies in the Alps and the Andes. Climatic Change, 133(3), 511–523. https://doi.org/10.1007/s10584-015-1529-5
  12. Kalair, A. R., Abas, N., Ul Hasan, Q., Kalair, E., Kalair, A., & Khan, N. (2019). Water, energy and food nexus of Indus Water Treaty: Water governance. Water-Energy Nexus, 2(1), 10–24. https://doi.org/10.1016/j.wen.2019.04.001
  13. Kronenberg, M., Schauwecker, S., Huggel, C., Salzmann, N., Drenkhan, F., Frey, H., Giraáldez, C., Gurgiser, W., Kaser, G., Juen, I., Suarez, W., Hernaández, J. G., Sanmartín, J. F., Ayros, E., Perry, B., & Rohrer, M. (2016). The Projected Precipitation Reduction over the Central Andes may Severely Affect Peruvian Glaciers and Hydropower Production. Energy Procedia, 97, 270–277. https://doi.org/10.1016/j.egypro.2016.10.072
  14. Lozano-Povis, A., Alvarez-Montalván, C. E., & Moggiano, N. (2021). Climate change in the Andes and its impact on agriculture: a systematic review. Scientia Agropecuaria, 12(1), 101–108. https://doi.org/10.17268/SCI.AGROPECU.2021.012
  15. Lychuk, T. E., Moulin, A. P., Lemke, R. L., Izaurralde, R. C., Johnson, E. N., Olfert, O. O., & Brandt, S. A. (2021). Modelling the effects of climate change, agricultural inputs, cropping diversity, and environment on soil nitrogen and phosphorus: A case study in Saskatchewan, Canada. Agricultural Water Management, 252(3), 106850. https://doi.org/10.1016/j.agwat.2021.106850
  16. Mengistu, D., Bewket, W., Dosio, A., & Panitz, H. J. (2021). Climate change impacts on water resources in the Upper Blue Nile (Abay) River Basin, Ethiopia. Journal of Hydrology, 592(September 2020), 125614. https://doi.org/10.1016/j.jhydrol.2020.125614
  17. Michelutti, N., Cooke, C. A., Hobbs, W. O., & Smol, J. P. (2015). Climate-driven changes in lakes from the Peruvian Andes. Journal of Paleolimnology, 54(1), 153–160. https://doi.org/10.1007/s10933-015-9843-5
  18. Ponce, C. (2020). Intra-seasonal climate variability and crop diversification strategies in the Peruvian Andes: A word of caution on the sustainability of adaptation to climate change. World Development, 127, 104740. https://doi.org/10.1016/j.worlddev.2019.104740
  19. Qi, P., Xia, Z., Zhang, G., Zhang, W., & Chang, Z. (2021). Effects of climate change on agricultural water resource carrying capacity in a high-latitude basin. Journal of Hydrology, 597(April), 126328. https://doi.org/10.1016/j.jhydrol.2021.126328
  20. Saavedra, M., Junquas, C., Espinoza, J. C., & Silva, Y. (2020). Impacts of topography and land use changes on the air surface temperature and precipitation over the central Peruvian Andes. Atmospheric Research, 234(April 2019), 104711. https://doi.org/10.1016/j.atmosres.2019.104711
  21. Sanabria, J., Calanca, P., Alarcón, C., & Canchari, G. (2014). Potential impacts of early twenty-first century changes in temperature and precipitation on rainfed annual crops in the Central Andes of Peru. Regional Environmental Change, 14(4), 1533–1548. https://doi.org/10.1007/s10113-014-0595-y
  22. Sarkar, S., & Maity, R. (2020). Increase in probable maximum precipitation in a changing climate over India. Journal of Hydrology, 585(March), 124806. https://doi.org/10.1016/j.jhydrol.2020.124806
  23. Shagega, F. P., Munishi, S. E., & Kongo, V. M. (2020). Assessment of potential impacts of climate change on water resources in Ngerengere catchment, Tanzania. Physics and Chemistry of the Earth, 116(April 2019), 102804. https://doi.org/10.1016/j.pce.2019.11.001
  24. Sun, C., Zhu, L., Liu, Y., Hao, Z., & Zhang, J. (2021). Changes in the drought condition over northern East Asia and the connections with extreme temperature and precipitation indices. Global and Planetary Change, 207(September), 103645. https://doi.org/10.1016/j.gloplacha.2021.103645
  25. Veettil, B. K., & Simões, J. C. (2019). The 2015/16 El Niño-related glacier changes in the tropical Andes. Frontiers of Earth Science, 13(2), 422–429. https://doi.org/10.1007/s11707-018-0738-4
  26. Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1
  27. Vuille, M. (2013). El cambio climatico y los recursos hidricos en los andes tropicales. Banco Interamericano de Desarrollo, 21. http://publications.iadb.org/bitstream/handle/11319/5826/SR2012_VUILLE_FINAL_ESP.pdf?sequence=1
  28. Wang, T., Tu, X., Singh, V. P., Chen, X., Lin, K., Lai, R., & Zhou, Z. (2022). Socioeconomic drought analysis by standardized water supply and demand index under changing environment. Journal of Cleaner Production, 347(March), 131248. https://doi.org/10.1016/j.jclepro.2022.131248
  29. Wang, Y., Zhou, B., Qin, D., Wu, J., Gao, R., & Song, L. (2017). Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: Observation and projection. Advances in Atmospheric Sciences, 34(3), 289–305. https://doi.org/10.1007/s00376-016-6160-5
  30. WMO. (2016). Handbook of Drought Indicators and Indices. In British Medical Journal (Vol. 1, Issue 2366). https://doi.org/10.1136/bmj.1.2366.1068-b
  31. Wongchuig, S. C., Mello, C. R., & Chou, S. C. (2018). Projections of the impacts of climate change on the water deficit and on the precipitation erosive indexes in Mantaro River Basin, Peru. Journal of Mountain Science, 15(2), 264–279. https://doi.org/10.1007/s11629-017-4418-8
  32. Zárate Malpica, A. H., & Miranda Zambrano, G. A. (2017). Impacto del cambio climático en la seguridad alimentaria en zonas campesinas vulnerables de los Andes del Perú. Revista Mexicana de Ciencias Agrícolas, 7(1), 71–82. https://doi.org/10.29312/remexca.v7i1.371
  33. Zhuang, X. W., Li, Y. P., Nie, S., Fan, Y. R., & Huang, G. H. (2018). Analyzing climate change impacts on water resources under uncertainty using an integrated simulation-optimization approach. Journal of Hydrology, 556, 523–538. https://doi.org/10.1016/j.jhydrol.2017.11.016