Vol. 25 No. 3 (2023)
Original articles

Light intensity and sucrose on the in vitro morpho-physiological response Selenicereus megalanthus (Haw.) Seedlings

Carlos Eduardo Millones Chanamé
universidad nacional toribio rodriguez de mendoza de amazonas
Ernestina Rosario Vásquez Castro
Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Perú

Published 2023-08-08

Keywords

  • Cactaceae, yellow pitahaya, photoautotrophic, water content, micropropagation, light intensity.

How to Cite

Millones Chanamé, C. E., & Vásquez Castro, E. R. (2023). Light intensity and sucrose on the in vitro morpho-physiological response Selenicereus megalanthus (Haw.) Seedlings. Revista De Investigaciones Altoandinas - Journal of High Andean Research, 25(3), 140-147. https://doi.org/10.18271/ria.2023.528

Abstract

Improving the efficiency in vitro culture conditions in established yellow pitahaya micropropagation protocols, allows evaluating the dependence of sucrose in the culture medium under photoautotrophic conditions to obtain high quality seedlings in less time, which favors their acclimatization in the mass production of this species. The objective of this research was to evaluate the levels of light intensity and the use or not of sucrose in the culture medium on the in vitro morphological and physiological response of yellow pitahaya (S. megalanthus) seedlings. Vegetative sections of yellow pitahaya were placed in growth and development culture media to obtain cuttings approximately six centimeters long to obtain the explants. The containers were placed at different light intensities: 50, 100 and 150 μmol/m-2s-1, using compact fluorescent lamps, whose intensities were adjusted using a luxometer. A completely randomized design with factorial arrangement (Factor A: three light intensities and Factor B: presence and absence of sucrose in the growth and development culture medium) and seven repetitions per treatment was used. The evaluations of the morphological and physiological response were made after 45 days of in vitro culture. The traits related to water content, dry weight and shoot length allow us to explain the photoautotrophic response of yellow pitahaya seedlings grown in vitro using light intensities of 50 and 100 μmol/m-2s-1 and in the absence of sucrose.

References

  1. Barrales-López, A., Robledo-Paz, A., Trejo, C., Espitia-Rangel, E. & Rodríguez, O.J.L. (2015). Improved in vitro rooting and acclimatization of Capsicum chinense Jacq. Platlets. In Vitro Cellular & Developmental Biology-Plant, 51(3), 274-283. https://doi.org/10.1007/s11627-015-9671-3
  2. Caetano, D.G., Escobar, R., Caetano, C.M. & Vaca, J.C.V. (2014). Estandarización de un protocolo de regeneración en pitahaya amarilla (Selenicereus megalanthus (K. Schum. Ex Vaupel) Moran). Acta Agronómica 63(1), 31-41. http://dx.doi.org/10.15446/acag.v63n1.36051
  3. Chongloi, L., Gunnaiah, R., Hipparagi, K., Guranna, P., Prakasha, D.P., Chittapur, R., Kamble, A. & Vishweshwar, S. (2022). Economic analysis of micropropagation of dragon fruit (Hylocereus undatus (Haw.) Britton and Rose). International Journal of Plant & Soil Science 34(22), 1267-1275. https://doi.org/10.9734/ijpss%2F2022%2Fv34i2231496
  4. Cruz, A., Tovar, Y.P. & Morillo, Y. (2016). Caracterización morfológica de Selenicereus megalanthus (K. Schum. Ex Vaupel) Moran en la provincia de Lengupá. Ciencia en Desarrollo 7(2), 23-33. http://www.scielo.org.co/pdf/cide/v7n2/v7n2a02.pdf
  5. De Assis, E.S., Neto, A.R., De Lima, L.R., Silva, F.G., Rosa, M., Filho, S.C.V. & Leite, M.S. (2016). In vitro culture of Mouriri elliptica (Mart.) under conditions that stimulate photoautothrophic behavior. Australian Journal of Crop Science 10(2), 229-236.
  6. De Feria, M., Rojas, D., Reyna, M., Quiala, E., Solls, E. & Zurita, F. (2012). In vitro propagation of Hylocereus purpusii Briton & Rose, a mexican species in danger of extinction. Biotecnología Vegetal 12(2), 77-83.
  7. Hua, Q., Chen, P., Liu, W., Ma, Y., Liang, R., Wang, L., Wang, Z., Hu, G. & Qin, Y. (2015). A protocol for rapid in vitro propagation of genetically diverse pitaya. Plant Cell Tiss Organ Cult 120(2), 741-745. https://doi.org/10.1007/s11240-014-0643-9
  8. Hoang, N.N., Kitaya, Y., Shibuya, T. & Endo, R. (2020). Effects of supporting materials in in vitro acclimatization stage on ex vitro growth of wasabi plants. Scientia Horticulturae 261, 1-7. https://doi.org/10.1016/j.scienta.2019.109042
  9. Hoang, N.N., Kitaya, Y., Morishita, T., Endo, R. & Shibuya, T. (2017). A comparative study on growth and morphology of wasabi plantlets under the influence of the micro-environment in shoot and root zones during photoautotrophic and photomixotrophic micropropagtion. Plant Cell Tiss Organ Cult 130(2), 255-263. https://doi.org/10.1007/s11240-017-1219-2
  10. Leite, M.S, Silva, F.G., Assis, E.S., Neto, A. R., Mendes, G.C. & Rosa, M. (2017). Morphoanatomy and physiology of Pouteria gradneriana Radlk plantlets in vitro at varied photosynthetic photon flux densities. Acta Scientiarum 39(2), 217-224. https://doi.org/10.4025/actasciagron.v39i2.32515
  11. Malláp-Detquizán, G., Vilca-Valqui, N.C., Meléndez-Mori, J.B., Huaman-Huaman, E. & Oliva, M. (2022). Multiplicación in vitro de pitahaya amarilla (Hylocereus megalanthus) a partir de plántulas obtenidas in vitro. Agronomía Mesoamericana 33(1), 45472. https://doi.org/10.15517/am.v33i1.45472
  12. Martins, J.P.R., Rodrigues, L.C.A., Santos, E.R., Gontijo, A.B.P.L. & Falqueto, A.R. (2020). Impacts of photoautotrophic, photomixotrophic, and heterotrophic conditions on the anatomy and photosystem II of in vitro-propagated Aechmea blanchetiana (Baker) L.B. Sm. (Bromeliaceae). In Vitro Cellular & Development Biology – Plant 56(3), 350-361. https://doi.org/10.1007/s11627-019-10034-2
  13. Mejía, N.M., Castro, J.P., Ocampo, Y.C., Salas, R.D., Delporte, C.L. & Franco, L.A. (2020). Evaluation of antioxidant potential and total phenolic content of exotic fruits grown in Colombia. Journal of Applied Pharmaceutical Science 10(9), 50-58. https://doi.org/10.7324/JAPS.2020.10906
  14. Millones, C.E. & Vásquez, E.R. (2010). Micropropagación de plantas derivadas de semillas botánicas de pitahaya amarilla (Selenicereus megalanthus Britton & Rose) provenientes de la provincia de Utcubamba, región Amazonas. Investigaciones Amazonenses 4(1), 34-38.
  15. Montiel-Fraustro, L.B., Del Valle, J.R. & Cisneros, A. (2016). Propagación in vitro de Hylocereus monocanthus (Lem.) Briton y Rose. Biotecnología Vegetal 16(2), 113-123. https://revista.ibp.co.cu/index.php/BV/article/view/516
  16. Murashige, T. & Skoog, F. (1962). A revised medium for rapid grown and bioassay with tobacco tissue culture. Physiologia Plantarum 15(3), 473 – 497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  17. Nguyen, Q.T., Xiao, Y. & Kozai, T. (2016). Photoautotrophic micropropagation. In: T. Kozai, G. Niu, M. Takagaki Eds. Plant Factory, Burlington: Academic Press, 271-283. https://doi.org/10.1016/B978-0-12-816691-8.00023-6
  18. Sáez, P.L., Bravo, L.A., Sánchez-Olate, M., Bravo, P.B. & Rios, D.G. (2016). Effect of photon flux density and exogenous sucrose on the photosynthetic performance during in vitro culture of Castanea sativa. American Journal of Plant Sciences 7(14), 2087-2105. https://doi.org/10.4236/ajps.2016.714187
  19. Sasongko, A.B., Fatumi, A. & Indrianto, A. (2016). The growth improvement of Grammatophyllum scriptum (Lindl.) Bl. in vitro plantlet using photoautotrophic micropropagation system. Indonesian Journal of Biotechnology 21(2), 109-116. https://doi.org/10.22146/ijbiotech.27167
  20. Shen, J. R. (2015). The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annual review of plant biology 66 (1), 23-48. https://doi.org/10.1146/annurev-arplant-050312-120129
  21. Suárez, R.S., Caetano, C.M. & Ramírez, H. (2014). Multiplicación de Selenicereus megalanthus (pitahaya amarilla) e Hylocereus polyrhizus (pitahaya roja) vía organogénesis somática. Acta Agronómica 63(3), 272-281. http://dx.doi.org/10.15446/acag.v63n3.40980
  22. Torres, Y., Melo, D.V., Torres-Valenzuela, L.S., Serna-Jiménez, J.A. & Villarreal, A.S. (2017). Evaluation of bioactive compounds with functional interest from yellow pitahaya (Selenicereus megalanthus Haw). Revista Facultad Nacional de Agronomía 70(3), 8311-8318. https://doi.org/10.15446/rfna.v70n3.66330
  23. Weiss, I., Mizrahi, Y., & Raveh, E. (2010). Effect of elevated CO2 on vegetative and reproductive growth characteristics of the CAM plants Hylocereus undatus and Selenicereus megalanthus. Scientia horticulturae, 123(4), 531-536. https://doi.org/10.1016/j.scienta.2009.11.002
  24. Zambrano-Forero, C.J., Ríos, J.A., Beltrán, D.M. & Mesa, N. (2015). Evaluación de reguladores de crecimiento en la propagación in vitro de Hylocereus megalanthus (pitahaya amarilla). Revista Tumbaga 1(10), 76-87. http://revistas.ut.edu.co/index.php/tumbaga/article/view/994
  25. Zhang, M., Zhao, D., Ma, Z., Li. X. & Xiao, Y. (2009). Growth and photosyntethic capability of Mormodica grosvenori plantlets grown photoautotrophically in response to ligth intensity. HortScience 44(3), 757-763. https://doi.org/10.21273/HORTSCI.44.3.757